Radiative decays and the $S U(6)$ Lie algebra

Milton Dean Slaughter
Department of Physics, Florida International University, Miami, Florida 33199, USA slaughtm@FIU.Edu; Slaughts@PhysicsResearch.Net

Received 3 May 2019
Revised 17 June 2019
Accepted 21 June 2019
Published 24 July 2019

Abstract

We present research on radiative decays of vector ($J^{P C}=1^{--}$) to pseudoscalar $\left(J^{P C}=0^{-+}\right)$particles (u, d, s, c, b, t quark system) using broken symmetry techniques in the infinite-momentum frame and equal-time commutation relations and the $S U(6)$ Lie algebra, and conducted without ascribing any specific form to meson quark structure or intra-quark interactions. We utilize the physical electromagnetic current $j_{\text {em }}^{\mu}(0)$ including its singlet $U(1)$ term and focus on the $S U(6) 35$-plet. We derive new relations involving the electromagnetic current (including its singlet - proportional to the $S U(6)$ singlet). Remarkably, we find that the electromagnetic current singlet plays an intrinsic role in understanding the physics of radiative decays and that the charged and neutral ρ meson radiative decays into $\pi \gamma$ are due entirely to the singlet term in $j_{\text {em }}^{\mu}(0)$. Although there is insufficient radiative decay experimental data available at this time, parametrization of possible predicted values of $\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ is made. For conciseness and self-containment, we compute all $S U(6)$ Lie algebra simple roots, positive roots, weights and fundamental weights which allow the construction of all $S U(6)$ representations. We also derive all nonzero $S U(6)$ generator commutators and anticommutators useful for further research on grand unified theories.

Keywords: Radiative decays of mesons; broken symmetry; infinite-momentum frame; equal-time commutation relations; $S U(6)$ Lie algebra.

PACS numbers: 12.38.Lg, 13.20.Fc, 13.20.Jf, 13.40.Hq, 14.40.Lb

1. Introduction

It is remarkable that in many cases observed particles appear to roughly fit into group-theoretical representation constructs which happen to be special unitary group representations. While these group-theoretical constructs obviously require that particles belonging to a particular representation all have the same mass, that is not what one observes in the real world - thus the need for quark flavor broken symmetry group techniques. To date, quantum chromodynamics (QCD)
based on Lagrangians (involving the addition of the Higgs field and other terms) invoking spontaneous symmetry breaking is the best theory for describing the real world, although lattice gauge models are making headway. As is well known, no theory capable of predicting and accommodating physical observations has yet been developed which incorporates the gravitational force. Indeed, although glueballs are predicted to exist in QCD, no uncontrovertible candidates have been found.

In this paper, we present research on radiative decays of vector $\left(J^{P C}=1^{--}\right)$to pseudoscalar $\left(J^{P C}=0^{-+}\right)$particles ${ }^{1}$ which appear to belong - at least in part (especially after application of broken symmetry techniques - infinite-momentum frame and asymptotic symmetry is discussed in Sec. 2) to specific flavor $S U_{F}(6)$ representations. The representations of $S U(N)-$ [special (determinant $=$ unity), unitary] - classical Lie ${ }^{2}$ groups are associated with the $S U(N)$ classical, semisimple Lie algebras via linearly independent matrix operators V_{a} [the V_{a} are linear "charge" generators ${ }^{3}$ - and $V_{a}{ }^{\mu}(x)=\bar{q}^{i}(x)\left(\lambda_{a} / 2\right)_{i j} \gamma^{\mu} q^{j}(x)$ are the corresponding charge density operators (q represents the u, d, s, c, b, t quark system)] which act on the relevant vector space where (bilinear) commutators of the V_{a} are Lie products acting over the real number field. Each V_{a} is a Hermitian 6×6 matrix for $N=6$ and there are $6^{2}-1=35 V_{a}$, where $a=1, \ldots, 35$.

In addition, we also introduce the singlet $U(1)$ matrix V_{0} which is proportional to the identity matrix and commutes with all other generators and is explicitly included in the physical electromagnetic current $j_{\mathrm{em}}^{\mu}(0)$. As we will discover in Sec. 3, the singlet has an intrinsic role in understanding the physics of radiative decays. Indeed, we introduce "generalized" Gell-Mann matrices (see Table 1) λ_{a} where $V_{a}=\lambda_{a} / 2$. We will find that specific combinations of the V_{a} can be ultimately constructed which represent physical "raising" or "lowering" operators and we will label them using $J^{P C}=0^{-+} 35$-plet pseudoscalar particle names. Explicitly - in the infinite-momentum frame - (as we will demonstrate later in this paper) - for example, the physical vector charge $V_{K^{0}}$ is $V_{K^{0}}=V_{6}+i V_{7}$ and the physical vector charge $V_{\pi^{ \pm}}=V_{1} \pm i V_{2}$. The λ_{a} satisfy the commutation algebra $\left[\left(\lambda_{a} / 2\right),\left(\lambda_{b} / 2\right)\right]=i \sum_{c=1}^{N^{2}-1} f_{a b c}\left(\lambda_{c} / 2\right)$, where the $f_{a b c}$ are structure constants (see Table 2) (we choose $f_{a b c}$ to be real and totally antisymmetric under permutations of the indices $a b c$ - we note that this can be done for $S U(M)$ groups in general). For clarity and conciseness and self-containment, the $\operatorname{SU}(6)$ Lie algebra simple roots, positive roots, weights, fundamental weights, nonzero commutators (see Table 3), and nonzero anticommutators (see Table 5) are also determined which allow construction of all $S U(6)$ representations. In Table 4, we also give all nonzero totally symmetric $S U(6)$ tensors $d_{i j k}$ useful in studying quark-gluon scattering and other processes. The $d_{i j k}$ satisfy $d_{i j k}=2 \operatorname{Tr}\left(V_{i}\left\{V_{j}, V_{k}\right\}\right)$.

Unless otherwise specified (or context specified), Lie algebras - (usually denoted by $\mathfrak{s u}(\mathfrak{n}))$ - corresponding to Lie groups $S U(N)$ - will just be denoted by $S U(N)$. Thus, $S U(6)$ refers to the compact, analytic, continuous, semisimple Lie algebra for the Lie group $S U(6)$. Cartan ${ }^{4}$ denotes $S U(6)$ as A_{5} and $S U(N)$

Table 1. "Generalized" Gell-Mann and flavor $U(1)$ singlet matrices.

$\lambda_{1}=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{2}=\left(\begin{array}{cccccc}0 & -i & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{3}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{4}=\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{5}=\left(\begin{array}{cccccc}0 & 0 & -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{6}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{7}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{8}=\left(\begin{array}{cccccc}\frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{9}=\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{10}=\left(\begin{array}{cccccc}0 & 0 & 0 & -i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{11}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{12}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{13}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{14}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & 0 & 0 \\ 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{15}=\left(\begin{array}{cccccc}\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{\frac{3}{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{16}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{17}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{18}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{19}=\left(\begin{array}{llllcl}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{20}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{21}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{22}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{23}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{24}=\left(\begin{array}{cccccc}\frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{-4}{\sqrt{10}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{25}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{26}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0\end{array}\right)$		$\lambda_{27}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$
$\lambda_{28}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 & 0\end{array}\right)$	$\lambda_{29}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$		$\lambda_{30}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 & 0 & 0\end{array}\right)$
$\lambda_{31}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$\lambda_{32}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & 0 & 0\end{array}\right)$		$\lambda_{33}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
$\lambda_{34}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 & i & 0\end{array}\right)$	$\lambda_{35}=\left(\begin{array}{cccc}\frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{15}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{15}} & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{15}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right.$	$\left.\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{\sqrt{15}} & 0 \\ 0 & \frac{-5}{\sqrt{15}}\end{array}\right)$	$\lambda_{0}=\frac{1}{\sqrt{3}}\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Table 2. Nonzero totally antisymmetric $S U(6)$ structure constants $f_{i j k}$.

i	j	k	$f_{i j k}$	i	j	k	$f_{i j k}$	i	j	k	$f_{i j k}$	i	j	k	$f_{i j k}$
1	2	3	1	1	4	7	$1 / 2$	1	5	6	$-1 / 2$	1	9	12	$1 / 2$
1	10	11	$-1 / 2$	1	16	19	$1 / 2$	1	17	18	$-1 / 2$	1	25	28	$1 / 2$
1	26	27	$-1 / 2$	2	4	6	$1 / 2$	2	5	7	$1 / 2$	2	9	11	$1 / 2$
2	10	12	$1 / 2$	2	16	18	$1 / 2$	2	17	19	$1 / 2$	2	25	27	$1 / 2$
2	26	28	$1 / 2$	3	4	5	$1 / 2$	3	6	7	$-1 / 2$	3	9	10	$1 / 2$
3	11	12	$-1 / 2$	3	16	17	$1 / 2$	3	18	19	$-1 / 2$	3	25	26	$1 / 2$
3	27	28	$-1 / 2$	4	5	8	$\sqrt{3} / 2$	4	9	14	$1 / 2$	4	10	13	$-1 / 2$
4	16	21	$1 / 2$	4	17	20	$-1 / 2$	4	25	30	$1 / 2$	4	26	29	$-1 / 2$
5	9	13	$1 / 2$	5	10	14	$1 / 2$	5	16	20	$1 / 2$	5	17	21	$1 / 2$
5	25	29	$1 / 2$	5	26	30	$1 / 2$	6	7	8	$\sqrt{3} / 2$	6	11	14	$1 / 2$
6	12	13	$-1 / 2$	6	18	21	$1 / 2$	6	19	20	$-1 / 2$	6	27	30	$1 / 2$
6	28	29	$-1 / 2$	7	11	13	$1 / 2$	7	12	14	$1 / 2$	7	18	20	$1 / 2$
7	19	21	$1 / 2$	7	27	29	$1 / 2$	7	28	30	$1 / 2$	8	9	10	$1 /(2 \sqrt{3})$
8	11	12	$1 /(2 \sqrt{3})$	8	13	14	$-(1 / \sqrt{3})$	8	16	17	$1 /(2 \sqrt{3})$	8	18	19	$1 /(2 \sqrt{3})$
8	20	21	$-(1 / \sqrt{3})$	8	25	26	$1 /(2 \sqrt{3})$	8	27	28	$1 /(2 \sqrt{3})$	8	29	30	$-(1 / \sqrt{3})$
9	10	15	$\sqrt{6} / 3$	9	16	23	$1 / 2$	9	17	22	$-1 / 2$	9	25	32	$1 / 2$
9	26	31	$-1 / 2$	10	16	22	$1 / 2$	10	17	23	$1 / 2$	10	25	31	$1 / 2$
10	26	32	$1 / 2$	11	12	15	$\sqrt{6} / 3$	11	18	23	$1 / 2$	11	19	22	$-1 / 2$
11	27	32	$1 / 2$	11	28	31	$-1 / 2$	12	18	22	$1 / 2$	12	19	23	$1 / 2$
12	27	31	$1 / 2$	12	28	32	$1 / 2$	13	14	15	$\sqrt{6} / 3$	13	20	23	$1 / 2$
13	21	22	$-1 / 2$	13	29	32	$1 / 2$	13	30	31	$-1 / 2$	14	20	22	$1 / 2$
14	21	23	$1 / 2$	14	29	31	$1 / 2$	14	30	32	$1 / 2$	15	16	17	$1 /(2 \sqrt{6})$
15	18	19	$1 /(2 \sqrt{6})$	15	20	21	$1 /(2 \sqrt{6})$	15	22	23	$-3 /(2 \sqrt{6})$	15	25	26	$1 /(2 \sqrt{6})$
15	27	28	$1 /(2 \sqrt{6})$	15	29	30	$1 /(2 \sqrt{6})$	15	31	32	$-3 /(2 \sqrt{6})$	16	17	24	$\sqrt{10} / 4$
16	25	34	$1 / 2$	16	26	33	$-1 / 2$	17	25	33	$1 / 2$	17	26	34	$1 / 2$
18	19	24	$\sqrt{10} / 4$	18	27	34	$1 / 2$	18	28	33	$-1 / 2$	19	27	33	$1 / 2$
19	28	34	$1 / 2$	20	21	24	$\sqrt{10} / 4$	20	29	34	$1 / 2$	20	30	33	$-1 / 2$
21	29	33	$1 / 2$	21	30	34	$1 / 2$	22	23	24	$\sqrt{10} / 4$	22	31	34	$1 / 2$
22	32	33	$-1 / 2$	23	31	33	$1 / 2$	23	32	34	$1 / 2$	24	25	26	$1 /(2 \sqrt{10})$
24	27	28	$1 /(2 \sqrt{10})$	24	29	30	$1 /(2 \sqrt{10})$	24	31	32	$1 /(2 \sqrt{10})$	24	33	34	$-\sqrt{10} / 5$
25	26	35	$\sqrt{15} / 5$	27	28	35	$\sqrt{15} / 5$	29	30	35	$\sqrt{15} / 5$	31	32	35	$\sqrt{15} / 5$
33	34	35	$\sqrt{15} / 5$												

as A_{N-1}. It is known that the lowest-dimensional $S U(N)$ representation is by $N \times N$, traceless matrix generators which we utilize in this paper. Data in this paper are taken from the Particle Data Group. ${ }^{5, \text { a }}$
${ }^{\text {a }}$ Particle charge conjugate states are utilized in this paper.

Table 3. Nonzero $S U(6)$ commutators.

1. $\left[v_{3}, V_{\pi+}\right]=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{+}}\right)$
2. $\left[V_{3}, V_{K^{+}}\right]=\left(\begin{array}{llllll}0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K+}}{2}\right)$
3. $\left[V_{3}, V_{\bar{D}^{0}}\right]=\left(\begin{array}{llllll}0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\overline{D_{0}}}}{2}\right)$
4. $\left[V_{3}, V_{B}+\right]=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B+}}{2}\right)$
5. $\left[V_{3}, V_{\bar{T}^{0}}\right]=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{T} 0}}{2}\right)$
6. $\left[V_{3}, V_{\pi}-\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\pi^{-}}\right)$
7. $\left[V_{3}, V_{K^{0}}\right]=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{K^{0}}}{2}\right)$
8. $\left[V_{3}, V_{D-}\right]=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D-}}{2}\right)$
9. $\left[V_{3}, V_{B^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B^{0}}}{2}\right)$
10. $\left[V_{3}, V_{T^{-}}\right]=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T-}}{2}\right)$
11. $\left[V_{3}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{K}-}{2}\right)$
12. $\left[V_{3}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{K}^{0}}}{2}\right)$
13. $\left[V_{3}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D^{0}}}{2}\right)$
14. $\left[V_{3}, V_{D+}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D+}}{2}\right)$
15. $\left[V_{3}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B-}}{2}\right)$
16. $\left[V_{3}, V_{\bar{B} 0}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B} 0}}{2}\right)$
17. $\left[V_{3}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T} 0}{2}\right)$
18. $\left[V_{3}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T+}}{2}\right)$
19. $\left[V_{\pi+}, V_{\pi^{-}}\right]=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(2 V_{3}\right)$
20. $\left[V_{\pi+}, V_{K^{0}}\right]=\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$

Table 3 (Continued)
21. $\left[V_{\pi^{+}}, V_{D^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$
22. $\left[V_{\pi^{+}}, V_{B^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
23. $\left[V_{\pi^{+}}, V_{T^{-}}\right]=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
24. $\left[V_{\pi^{+}}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{K}^{0}}\right)$
25. $\left[V_{\pi^{+}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D^{+}}\right)$
26. $\left[V_{\pi^{+}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{B}^{0}}\right)$
27. $\left[V_{\pi^{+}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{+}}\right)$
28. $\left[V_{K^{+}}, V_{\pi^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{K^{0}}\right)$
29. $\left[V_{K^{+}}, V_{8}\right]=\left(\begin{array}{cccccc}0 & 0 & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{1}{2} \sqrt{3} V_{K^{+}}\right)$
30. $\left[V_{K^{+}}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(V_{3}+\sqrt{3} v_{8}\right)
$$

31. $\left[V_{K^{+}}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{+}}\right)$
32. $\left[V_{K^{+}}, V_{D_{s}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$
33. $\left[V_{K^{+}}, V_{B_{s}^{0}}\right]=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
34. $\left[V_{K^{+}}, V_{T_{s}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
35. $\left[V_{K^{+}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D_{s}^{+}}\right)$
36. $\left[V_{K^{+}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{B}_{s}^{0}}\right)$
37. $\left[V_{K^{+}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{+}}\right)$
38. $\left[V_{\bar{D}^{0}}, V_{\pi^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D^{-}}\right)$
39. $\left[V_{\bar{D} 0}, V_{8}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{D} 0}}{2 \sqrt{3}}\right)$
40. $\left[V_{\bar{D}^{0}}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D_{s}^{-}}\right)$

Table 3 (Continued)
41. $\left[V_{\bar{D} 0}, V_{15}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & -\sqrt{\frac{2}{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{2}{3}} V_{\overline{D^{0}}}\right)
$$

42. $\left[V_{\bar{D}^{0}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(V_{3}+\frac{V_{8}}{\sqrt{3}}+2 \sqrt{\frac{2}{3}} V_{15}\right)
$$

43. $\left[V_{\bar{D}^{0}}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi+}\right)$
44. $\left[V_{\bar{D}^{0}}, V_{D_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$
45. $\left[V_{\bar{D}^{0}}, V_{B_{c}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
46. $\left[V_{\bar{D}^{0}}, V_{\bar{T}_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
47. $\left[V_{\bar{D}^{0}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{c}^{-}}\right)$
48. $\left[V_{\bar{D}^{0}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0\end{array}\right)=\left(-V_{T_{c}^{0}}\right)$
49. $\left[V_{B^{+}}, V_{\pi^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B^{0}}\right)$
50. $\left[V_{B+}, V_{8}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B}+}{2 \sqrt{3}}\right)$
51. $\left[V_{B^{+}}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{s}^{0}}\right)$
52. $\left[V_{B^{+}}, V_{15}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{6}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{V_{B}+}{2 \sqrt{6}}\right)$
53. $\left[V_{B^{+}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{c}^{+}}\right)$
54. $\left[V_{B^{+}}, V_{24}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{B+}\right)
$$

55. $\left[V_{B^{+}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}+\sqrt{\frac{5}{2}} V_{24}\right)
$$

56. $\left[V_{B}+V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi+}\right)$
57. $\left[V_{B^{+}}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$
58. $\left[V_{B^{+}}, V_{B_{C}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$

Table 3 (Continued)
59. $\left[V_{B^{+}}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
60. $\left[V_{B^{+}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right)=\left(-V_{T_{b}^{+}}\right)$
61. $\left[V_{\bar{T}^{0}}, V_{\pi^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{-}}\right)$
62. $\left[V_{\bar{T} 0}, V_{8}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{T} 0}}{2 \sqrt{3}}\right)$
63. $\left[V_{\bar{T} 0}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{-}}\right)$
64. $\left[V_{\bar{T}^{0}}, V_{15}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{6}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{T} 0}}{2 \sqrt{6}}\right)$
65. $\left[V_{\bar{T}^{0}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{T}_{c}^{0}}\right)$
66. $\left[V_{\bar{T}^{0}}, V_{24}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{\bar{T} 0}}{2 \sqrt{10}}\right)
$$

67. $\left[V_{\bar{T}^{0}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{b}^{-}}\right)$
68. $\left[V_{\bar{T}^{0}}, V_{35}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{3}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\sqrt{\frac{3}{5}} V_{\bar{T}^{0}}\right)$
69. $\left[V_{\bar{T}^{0}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$
$=\left(V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}+\frac{V_{24}}{\sqrt{10}}+2 \sqrt{\frac{3}{5}} V_{35}\right)$
70. $\left[V_{\bar{T}^{0}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{+}}\right)$
71. $\left[V_{\bar{T}^{0}}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$
72. $\left[V_{\bar{T}^{0}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$
73. $\left[V_{\bar{T}^{0}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
74. $\left[V_{\pi-}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{K^{-}}\right)$
75. $\left[V_{\pi^{-}}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D^{0}}\right)$
76. $\left[V_{\pi-}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B^{-}}\right)$

Table 3 (Continued)
77. $\left[V_{\pi-}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{0}}\right)$
78. $\left[V_{8}, V_{K^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{\sqrt{3} V_{K^{0}}}{2}\right)$
79. $\left[V_{8}, V_{D^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D-}}{2 \sqrt{3}}\right)$
80. $\left[V_{8}, V_{B^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B^{0}}}{2 \sqrt{3}}\right)$
81. $\left[V_{8}, V_{T^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T-}}{2 \sqrt{3}}\right)$
82. $\left[V_{8}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{3} V_{K^{-}}\right)
$$

83. $\left[V_{8}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{3} V_{\bar{K}^{0}}\right)
$$

84. $\left[V_{8}, V_{D_{s}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D_{s}}}{\sqrt{3}}\right)$
85. $\left[V_{8}, V_{B_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B_{s}^{0}}}{\sqrt{3}}\right)$
86. $\left[V_{8}, V_{T_{s}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T_{s}}}{\sqrt{3}}\right)$
87. $\left[V_{8}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D^{0}}}{2 \sqrt{3}}\right)$
88. $\left[V_{8}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D+}}{2 \sqrt{3}}\right)$
89. $\left[V_{8}, V_{D_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{s}^{+}}}{\sqrt{3}}\right)$
90. $\left[V_{8}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B}-}{2 \sqrt{3}}\right)$
91. $\left[V_{8}, V_{\bar{B} 0}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{B} 0}}{2 \sqrt{3}}\right)$
92. $\left[V_{8}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B}_{s}^{0}}}{\sqrt{3}}\right)$
93. $\left[V_{8}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T^{0}}}{2 \sqrt{3}}\right)$
94. $\left[V_{8}, V_{T+}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T}+}{2 \sqrt{3}}\right)$

Table 3 (Continued)
95. $\left[V_{8}, V_{T_{S}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T_{S}^{+}}}{\sqrt{3}}\right)$
96. $\left[V_{K^{0}}, V_{K^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi-}\right)$
97. $\left[V_{K^{0}}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-V_{3}+\sqrt{3} V_{8}\right)
$$

98. $\left[V_{K^{0}}, V_{D_{s}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right)$
99. $\left[V_{K^{0}}, V_{B_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{0}}\right)$
100. $\left[V_{K^{0}}, V_{T_{s}^{-}}^{-}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{-}}\right)$
101. $\left[V_{K^{0}}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D_{s}^{+}}\right)$
102. $\left[V_{K^{0}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{B}_{s}^{0}}\right)$
103. $\left[V_{K^{0}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{+}}\right)$
104. $\left[V_{D^{-}}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{D_{s}^{-}}\right)$
105. $\left[V_{D^{-}}, V_{15}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{\frac{2}{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\sqrt{\frac{2}{3}} V_{D^{-}}\right)$
106. $\left[V_{D^{-}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
107. $\left[V_{D^{-}}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-V_{3}+\frac{V_{8}}{\sqrt{3}}+2 \sqrt{\frac{2}{3}} V_{15}\right)$
108. $\left[V_{D^{-}}, V_{D_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{0}}\right)$
109. $\left[V_{D^{-}}, V_{B_{c}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{0}}\right)$
110. $\left[V_{D^{-}}, V_{\bar{T}_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{-}}\right)$
111. $\left[V_{D^{-}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{\bar{c}}^{-}}\right)$
112. $\left[V_{D^{-}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0\end{array}\right)=\left(-V_{T_{c}^{0}}\right)$
113. $\left[V_{B^{0}}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{s}^{0}}\right)$

Table 3 (Continued)
$\begin{aligned} \text { 114. }\left[V_{B^{0}}, V_{15}\right] & =\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{6}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \\ & =\left(-\frac{V_{B}}{2 \sqrt{6}}\right) \\ \text { 115. }\left[V_{B^{0}}, V_{D^{+}}\right] & =\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B_{C}^{+}}\right)\end{aligned}$
116. $\left[V_{B^{0}}, V_{24}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{B^{0}}\right)
$$

117. $\left[V_{B^{0}}, V_{B^{-}}\right]=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
118. $\left[V_{B^{0}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}+\sqrt{\frac{5}{2}} V_{24}\right)
$$

119. $\left[V_{B^{0}}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{0}}\right)$
120. $\left[V_{B^{0}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right)$
121. $\left[V_{B^{0}}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{-}}\right)$
122. $\left[V_{B^{0}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right)=\left(-V_{T_{b}^{+}}\right)$
123. $\left[V_{T^{-}}, V_{\bar{K}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{-}}\right)$
124. $\left[V_{T^{-}}, V_{15}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{6}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T-}}{2 \sqrt{6}}\right)
$$

$$
\text { 125. }\left[V_{T^{-}}, V_{D^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(-V_{\bar{T}_{C}^{0}}\right)
$$

126. $\left[V_{T^{-}}, V_{24}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T-}}{2 \sqrt{10}}\right)
$$

127. $\left[V_{T^{-}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{b}^{-}}\right)$
128. $\left[V_{T^{-}}, V_{35}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{3}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{5}} V_{T^{-}}\right)
$$

129. $\left[V_{T^{-}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
130. $\left[V_{T^{-}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$
$=\left(-V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}\right.$
$\left.+\frac{V_{24}}{\sqrt{10}}+2 \sqrt{\frac{3}{5}} V_{35}\right)$

Table 3 (Continued)

$$
\begin{aligned}
& \text { 131. }\left[V_{T^{-}}, V_{T_{s}^{+}}\right]
\end{aligned} \begin{aligned}
& \text { 132. }\left[V_{T^{-}}, V_{T_{c}^{0}}\right]
\end{aligned}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{K^{0}}\right)
$$

Table 3 (Continued)
149. $\left[V_{15}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{\bar{B} 0}}{2 \sqrt{6}}\right)
$$

150. $\left[V_{15}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{\bar{B}_{s}^{0}}}{2 \sqrt{6}}\right)
$$

151. $\left[V_{15}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{\frac{3}{2}}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{1}{2} \sqrt{\frac{3}{2}} V_{B_{c}^{-}}\right)
$$

152. $\left[V_{15}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T 0}}{2 \sqrt{6}}\right)
$$

153. $\left[V_{15}, V_{T+}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T}+}{2 \sqrt{6}}\right)
$$

154. $\left[V_{15}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T_{s}^{+}}}{2 \sqrt{6}}\right)
$$

155. $\left[V_{15}, V_{T_{c}^{0}}\right]=$

$$
\begin{aligned}
& =\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\sqrt{\frac{3}{2}}}{2} & 0 & 0
\end{array}\right) \\
& =\left(\frac{1}{2} \sqrt{\frac{3}{2}} V_{T_{C}^{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 156. }\left[V_{D_{s}^{-}}, V_{D^{0}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{K^{-}}\right) \\
& \text {157. }\left[V_{D_{s}^{-}}, V_{D+}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{\bar{K}^{0}}\right) \\
& \text { 158. }\left[V_{D_{s}^{-}}, V_{D_{s}^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(-\frac{2 V_{8}}{\sqrt{3}}+2 \sqrt{\frac{2}{3}} V_{15}\right) \\
& \text { 159. }\left[V_{D_{s}^{-}}, V_{B_{c}^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{B_{s}^{0}}\right) \\
& \text { 160. }\left[V_{D_{s}^{-}}, V_{\bar{T}_{c}^{0}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{T_{s}^{-}}\right) \\
& \text {161. }\left[V_{D_{s}^{-}}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(-V_{B_{c}^{-}}\right) \\
& \text {162. }\left[V_{D_{s}^{-}}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0
\end{array}\right)=\left(-V_{T_{c}^{0}}\right) \\
& \text { 163. }\left[V_{B_{s}^{0}}, V_{D_{S}^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(-V_{B_{C}^{+}}\right) \\
& \text {164. }\left[V_{B_{s}^{0}}, V_{24}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{B_{s}^{0}}\right)
\end{aligned}
$$

Table 3 (Continued)
165. $\left[V_{B_{s}^{0}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
166. $\left[V_{B_{s}^{0}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
167. $\left[V_{B_{S}^{0}}, V_{\bar{B}_{S}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}+\sqrt{\frac{5}{2}} V_{24}\right)
$$

168. $\left[V_{B_{s}^{0}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
169. $\left[V_{B_{s}^{0}}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}^{-}}\right)$
170. $\left[V_{B_{s}^{0}}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right)=\left(-V_{T_{b}^{+}}\right)$
171. $\left[V_{T_{s}^{-}}, V_{D_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{T}_{c}^{0}}\right)$
172. $\left[V_{T_{s}{ }^{-}}, V_{24}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{V_{T_{s}^{-}}}{2 \sqrt{10}}\right)$
173. $\left[V_{T_{s}^{-}}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{b}^{-}}\right)$
174. $\left[V_{T_{s}^{-}}, V_{35}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{3}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\sqrt{\frac{3}{5}} V_{T_{s}^{-}}\right)$
175. $\left[V_{T_{s}^{-}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
176. $\left[V_{T_{s}^{-}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
177. $\left[V_{T_{S}^{-}}, V_{T_{S}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$
$=\left(-\frac{2 V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}+\frac{V_{24}}{\sqrt{10}}+2 \sqrt{\frac{3}{5}} V_{35}\right)$
178. $\left[V_{T_{s}^{-}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
179. $\left[V_{T_{s}^{-}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{s}^{0}}\right)$
180. $\left[V_{D^{0}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{B^{-}}\right)$
181. $\left[V_{D^{0}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{0}}\right)$
182. $\left[V_{D^{+}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{B}^{0}}\right)$

Table 3 (Continued)
183. $\left[V_{D^{+}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{+}}\right)$
184. $\left[V_{D_{s}^{+}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{\bar{B}_{s}^{0}}\right)$
185. $\left[V_{D_{s}^{+}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{+}}\right)$
186. $\left[V_{24}, V_{B_{C}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{\frac{5}{2}}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{1}{2} \sqrt{\frac{5}{2}} V_{B_{C}^{+}}\right)
$$

$$
\text { 187. }\left[V_{24}, V_{\bar{T}_{c}^{0}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{\bar{T}_{c}^{0}}}{2 \sqrt{10}}\right)
$$

$$
\text { 188. }\left[V_{24}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{\frac{5}{2}}}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{B^{-}}\right)
$$

$$
\text { 189. }\left[V_{24}, V_{\bar{B} 0}\right]=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{\bar{B}^{0}}\right)
$$

$$
\text { 190. }\left[V_{24}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{\bar{B}_{s}^{0}}\right)
$$

191. $\left[V_{24}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{\frac{5}{2}} V_{B_{c}^{-}}\right)
$$

192. $\left[V_{24}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{2}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ $=\left(-\sqrt{\frac{2}{5}} V_{T_{b}^{-}}\right)$
193. $\left[V_{24}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T 0}}{2 \sqrt{10}}\right)
$$

194. $\left[V_{24}, V_{T}+\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T+}}{2 \sqrt{10}}\right)
$$

195. $\left[V_{24}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2 \sqrt{10}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T_{s}^{+}}}{2 \sqrt{10}}\right)
$$

196. $\left[V_{24}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T_{c}^{0}}}{2 \sqrt{10}}\right)
$$

$$
\text { 197. }\left[V_{24}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{\frac{2}{5}} & 0
\end{array}\right)
$$

$$
=\left(\sqrt{\frac{2}{5}} V_{T_{b}^{+}}\right)
$$

Table 3 (Continued)
198. $\left[V_{B_{C}^{+}}, V_{B^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$
199. $\left[V_{B_{C}^{+}}, V_{\bar{B}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$
200. $\left[V_{B_{c}^{+}}, V_{\bar{B}_{s}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{+}}\right)$
201. $\left[V_{B_{C}^{+}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{2}} V_{15}+\sqrt{\frac{5}{2}} V_{24}\right)
$$

202. $\left[V_{B_{c}^{+}}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}_{c}^{0}}\right)$
203. $\left[V_{B_{c}^{+}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right)=\left(-V_{T_{b}^{+}}\right)$
204. $\left[V_{\bar{T}_{c}^{0}}, V_{B_{c}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{b}^{-}}\right)$
205. $\left[V_{\bar{T}_{c}^{0}}, V_{35}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{3}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{5}} V_{\bar{T}_{c}^{0}}\right)
$$

206. $\left[V_{\bar{T}_{c}^{0}}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$
207. $\left[V_{\bar{T}_{c}^{0}}, V_{T^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$
208. $\left[V_{\bar{T}_{c}^{0}}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{+}}\right)$
209. $\left[V_{\bar{T}_{c}^{0}}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{2}} V_{15}+\frac{V_{24}}{\sqrt{10}}+2 \sqrt{\frac{3}{5}} V_{35}\right)
$$

210. $\left[V_{\bar{T}_{c}^{0}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{+}}\right)$
211. $\left[V_{B^{-}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T^{0}}\right)$
212. $\left[V_{\bar{B}^{0}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0\end{array}\right)=\left(-V_{T+}\right)$
213. $\left[V_{\bar{B}_{s}^{0}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0\end{array}\right)=\left(-V_{T_{s}^{+}}\right)$
214. $\left[V_{B_{c}^{-}}, V_{T_{b}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0\end{array}\right)=\left(-V_{T_{c}^{0}}\right)$
215. $\left[V_{35}, V_{T_{b}^{-}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{\frac{3}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\sqrt{\frac{3}{5}} V_{T_{b}^{-}}\right)$

Table 3 (Continued)
216. $\left[V_{35}, V_{T^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\sqrt{\frac{3}{5}} & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{5}} V_{T^{0}}\right)
$$

217. $\left[V_{35}, V_{T^{+}}\right]=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sqrt{\frac{3}{5}} & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{5}} V_{T^{+}}\right)
$$

218. $\left[V_{35}, V_{T_{s}^{+}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\sqrt{\frac{3}{5}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{3}{5}} V_{T_{s}^{+}}\right)
$$

219. $\left[V_{35}, V_{T_{c}^{0}}\right]=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{\frac{3}{5}} & 0 & 0\end{array}\right)$
$=\left(-\sqrt{\frac{3}{5}} V_{T_{c}^{0}}\right)$

1.1. More about the $S U(6)$ Lie algebra

The defining bilinear operation - the commutator [,] - involving the structure constants and which determines the Lie algebra and a generator scalar product is given by

$$
\begin{equation*}
\left[V_{a}, V_{b}\right]=i \sum_{c=1}^{N^{2}-1} f_{a b c} V_{c} \tag{1a}
\end{equation*}
$$

where $a, b=1,2, \ldots, N^{2}-1$

$$
\begin{gather*}
\operatorname{Tr}\left[V_{a} V_{b}\right]=\frac{1}{2} \delta_{a b} \tag{1b}\\
f_{a b c}=-i 2 \operatorname{Tr}\left(\left[V_{a}, V_{b}\right] V_{c}\right) \tag{1c}
\end{gather*}
$$

Table 4. Nonzero totally symmetric $S U(6)$ structure constant related tensors $d_{i j k}$.

i	j	k	$d_{i j k}$	i	j	k	$d_{i j k}$	i	j	k	$d_{i j k}$	i	j	k	$d_{i j k}$
0	j	k	$\delta_{j k} / \sqrt{3}$	1	1	8	$1 / \sqrt{3}$	1	1	15	$1 / \sqrt{6}$	1	1	24	$1 / \sqrt{10}$
1	1	35	$1 / \sqrt{15}$	1	4	6	$1 / 2$	1	5	7	1/2	1	9	11	$1 / 2$
1	10	12	1/2	1	16	18	1/2	1	17	19	1/2	1	25	27	1/2
1	26	28	$1 / 2$	2	2	8	$1 / \sqrt{3}$	2	2	15	$1 / \sqrt{6}$	2	2	24	$1 / \sqrt{10}$
2	2	35	$1 / \sqrt{15}$	2	4	7	$-1 / 2$	2	5	6	1/2	2	9	12	$-1 / 2$
2	10	11	1/2	2	16	19	$-1 / 2$	2	17	18	1/2	2	25	28	$-1 / 2$
2	26	27	1/2	3	3	8	$1 / \sqrt{3}$	3	3	15	$1 / \sqrt{6}$	3	3	24	$1 / \sqrt{10}$
3	3	35	$1 / \sqrt{15}$	3	4	4	1/2	3	5	5	1/2	3	6	6	$-1 / 2$
3	7	7	$-1 / 2$	3	9	9	1/2	3	10	10	$1 / 2$	3	11	11	$-1 / 2$
3	12	12	-1/2	3	16	16	1/2	3	17	17	1/2	3	18	18	$-1 / 2$
3	19	19	$-1 / 2$	3	25	25	1/2	3	26	26	$1 / 2$	3	27	27	$-1 / 2$
3	28	28	$-1 / 2$	4	4	8	$-1 /(2 \sqrt{3})$	4	4	15	$1 / \sqrt{6}$	4	4	24	$1 / \sqrt{10}$
4	4	35	$1 / \sqrt{15}$	4	9	13	$1 / 2$	4	10	14	1/2	4	16	20	$1 / 2$
4	17	21	$1 / 2$	4	25	29	$1 / 2$	4	26	30	$1 / 2$	5	5	8	$-1 /(2 \sqrt{3})$
5	5	15	$1 / \sqrt{6}$	5	5	24	$1 / \sqrt{10}$	5	5	35	$1 / \sqrt{15}$	5	9	14	$-1 / 2$
5	10	13	1/2	5	16	21	$-1 / 2$	5	17	20	$1 / 2$	5	25	30	$-1 / 2$
5	26	29	$1 / 2$	6	6	8	$-1 /(2 \sqrt{3})$	6	6	15	$1 / \sqrt{6}$	6	6	24	$1 / \sqrt{10}$
6	6	35	$1 / \sqrt{15}$	6	11	13	$1 / 2$	6	12	14	1/2	6	18	20	1/2
6	19	21	1/2	6	27	29	1/2	6	28	30	1/2	7	7	8	$-1 /(2 \sqrt{3})$
7	7	15	$1 / \sqrt{6}$	7	7	24	$1 / \sqrt{10}$	7	7	35	$1 / \sqrt{15}$	7	11	14	$-1 / 2$
7	12	13	1/2	7	18	21	$-1 / 2$	7	19	20	1/2	7	27	30	$-1 / 2$
7	28	29	1/2	8	8	8	$-(1 / \sqrt{3})$	8	8	15	$1 / \sqrt{6}$	8	8	24	$1 / \sqrt{10}$
8	8	35	$1 / \sqrt{15}$	8	9	9	$1 /(2 \sqrt{3})$	8	10	10	$1 /(2 \sqrt{3})$	8	11	11	$1 /(2 \sqrt{3})$
8	12	12	$1 /(2 \sqrt{3})$	8	13	13	$-(1 / \sqrt{3})$	8	14	14	$-(1 / \sqrt{3})$	8	16	16	$1 /(2 \sqrt{3})$
8	17	17	$1 /(2 \sqrt{3})$	8	18	18	$1 /(2 \sqrt{3})$	8	19	19	$1 /(2 \sqrt{3})$	8	20	20	$-(1 / \sqrt{3})$
8	21	21	$-(1 / \sqrt{3})$	8	25	25	$1 /(2 \sqrt{3})$	8	26	26	$1 /(2 \sqrt{3})$	8	27	27	$1 /(2 \sqrt{3})$
8	28	28	$1 /(2 \sqrt{3})$	8	29	29	$-(1 / \sqrt{3})$	8	30	30	$-(1 / \sqrt{3})$	9	9	15	$-(1 / \sqrt{6})$
9	9	24	$1 / \sqrt{10}$	9	9	35	$1 / \sqrt{15}$	9	16	22	1/2	9	17	23	1/2
9	26	32	$1 / 2$	10	10	15	$-(1 / \sqrt{6})$	10	10	24	$1 / \sqrt{10}$	10	10	35	$1 / \sqrt{15}$
10	16	23	-1/2	10	17	22	$1 / 2$	10	25	32	$-1 / 2$	10	26	31	$1 / 2$
11	11	15	$-(1 / \sqrt{6})$	11	11	24	$1 / \sqrt{10}$	11	11	35	$1 / \sqrt{15}$	11	18	22	1/2
11	19	23	1/2	11	27	31	1/2	11	28	32	$1 / 2$	12	12	15	$-(1 / \sqrt{6})$
12	12	24	$1 / \sqrt{10}$	12	12	35	$1 / \sqrt{15}$	12	18	23	$-1 / 2$	12	19	22	$1 / 2$
12	27	32	$-1 / 2$	12	28	31	$1 / 2$	13	13	15	$-(1 / \sqrt{6})$	13	13	24	$1 / \sqrt{10}$
13	13	35	$1 / \sqrt{15}$	13	20	22	1/2	13	21	23	1/2	13	29	31	$1 / 2$
13	30	32	$1 / 2$	14	14	15	$-(1 / \sqrt{6})$	14	14	24	$1 / \sqrt{10}$	14	14	35	$1 / \sqrt{15}$
14	20	23	$-1 / 2$	14	21	22	1/2	14	29	32	$-1 / 2$	14	30	31	1/2
15	15	15	$-2 / \sqrt{6}$	15	15	24	$1 / \sqrt{10}$	15	15	35	$1 / \sqrt{15}$	15	16	16	$1 /(2 \sqrt{6})$
15	17	17	$1 /(2 \sqrt{6})$	15	18	18	$1 /(2 \sqrt{6})$	15	19	19	$1 /(2 \sqrt{6})$	15	20	20	$1 /(2 \sqrt{6})$
15	21	21	$1 /(2 \sqrt{6})$	15	22	22	$-3 /(2 \sqrt{6})$	15	23	23	$-3 /(2 \sqrt{6})$	15	25	25	$1 /(2 \sqrt{6})$
15	26	26	$1 /(2 \sqrt{6})$	15	27	27	$1 /(2 \sqrt{6})$	15	28	28	$1 /(2 \sqrt{6})$	15	29	29	$1 /(2 \sqrt{6})$
15	30	30	$1 /(2 \sqrt{6})$	15	31	31	$-3 /(2 \sqrt{6})$	15	32	32	$-3 /(2 \sqrt{6})$	16	16	24	$-3 /(2 \sqrt{10})$
16	16	35	$1 / \sqrt{15}$	16	25	33	$1 / 2$	16	26	34	1/2	17	17	24	$-3 /(2 \sqrt{10})$
17	17	35	$1 / \sqrt{15}$	17	25	34	$-1 / 2$	17	26	33	1/2	18	18	24	$-3 /(2 \sqrt{10})$
18	18	35	$1 / \sqrt{15}$	18	27	33	1/2	18	28	34	1/2	19	19	24	$-3 /(2 \sqrt{10})$
19	19	35	$1 / \sqrt{15}$	19	27	34	-1/2	19	28	33	1/2	20	20	24	$-3 /(2 \sqrt{10})$
20	20	35	$1 / \sqrt{15}$	20	29	33	1/2	20	30	34	1/2	21	21	24	$-3 /(2 \sqrt{10})$
21	21	35	$1 / \sqrt{15}$	21	29	34	$-1 / 2$	21	30	33	1/2	22	22	24	$-3 /(2 \sqrt{10})$
22	22	35	$1 / \sqrt{15}$	22	31	33	1/2	22	32	34	1/2	23	23	24	$-3 /(2 \sqrt{10})$
23	23	35	$1 / \sqrt{15}$	23	31	34	$-1 / 2$	23	32	33	1/2	24	24	24	$-3 / \sqrt{10}$
24	24	35	$1 / \sqrt{15}$	24	25	25	$1 /(2 \sqrt{10})$	24	26	26	$1 /(2 \sqrt{10})$	24	27	27	$1 /(2 \sqrt{10})$
24	28	28	$1 /(2 \sqrt{10})$	24	29	29	$1 /(2 \sqrt{10})$	24	30	30	$1 /(2 \sqrt{10})$	24	31	31	$1 /(2 \sqrt{10})$
24	32	32	$1 /(2 \sqrt{10})$	24	33	33	$-\sqrt{2 / 5}$	24	34	34	$-\sqrt{2 / 5}$	25	25	35	$-2 / \sqrt{15}$
26	26	35	$-2 / \sqrt{15}$	27	27	35	$-2 / \sqrt{15}$	28	28	35	$-2 / \sqrt{15}$	29	29	35	$-2 / \sqrt{15}$
30	30	35	$-2 / \sqrt{15}$	31	31	35	$-2 / \sqrt{15}$	32	32	35	$-2 / \sqrt{15}$	33	33	35	$-2 / \sqrt{15}$
34	34	35	$-2 / \sqrt{15}$	35	35	35	$-4 / \sqrt{15}$								

Table 5. Nonzero $S U(6)$ anticommutators.

1. $\left\{V_{3}, V_{K}+\right\}=\left(\begin{array}{cccccc}0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}+}{2}\right)$	10. $\left\{V_{3}, V_{K-}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}-}{2}\right)$
2. $\left\{V_{3}, V_{\bar{D} 0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{D} 0}}{2}\right)$	11. $\left\{V_{3}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{K}^{0}}}{2}\right)$
3. $\left\{V_{3}, V_{B}+\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B+}+}{2}\right)$	12. $\left\{V_{3}, V_{15}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{3}}{\sqrt{6}}\right)$
4. $\left\{V_{3}, V_{\bar{T} 0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{T} 0}}{2}\right)$	13. $\left\{V_{3}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D^{0}}}{2}\right)$
5. $\left\{V_{3}, V_{8}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{3}}{\sqrt{3}}\right)$	14. $\left\{V_{3}, V_{D}+\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D}+}{2}\right)$
6. $\left\{V_{3}, V_{K^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{K^{0}}}{2}\right)$	15. $\left\{V_{3}, V_{24}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{l} \\ \sqrt{10}\end{array}\right)$
7. $\left\{V_{3}, V_{D^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{D-}}{2}\right)$	16. $\left\{V_{3}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B}-}{2}\right)$
8. $\left\{V_{3}, V_{B^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{B} 0}{2}\right)$	17. $\left\{V_{3}, V_{\bar{B} 0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{B} 0}}{2}\right)$
9. $\left\{V_{3}, V_{T^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T-}-}{2}\right)$	18. $\left\{V_{3}, V_{35}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{15}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{3}}{\sqrt{15}}\right)$

Table 5 (Continued)
19. $\left\{V_{3}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T} 0}{2}\right)$
20. $\left\{V_{3}, V_{T}+\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{T}+}{2}\right)$
21. $\left\{V_{3}, V_{0}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{3}}{\sqrt{3}}\right)$
22. $\left\{V_{\pi+}, V_{\pi-}\right\}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}+\frac{2 V_{8}}{\sqrt{3}}+\sqrt{\frac{2}{3}} V_{15}\right.
$$

$$
\left.+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

23. $\left\{V_{\pi+}, V_{8}\right\}=\left(\begin{array}{cccccc}0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}+}{\sqrt{3}}\right)$
24. $\left\{V_{\pi+}, V_{K^{0}}\right\}=\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K+}\right)$
25. $\left\{V_{\pi+}, V_{D^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$
26. $\left\{V_{\pi+}, V_{B^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
27. $\left\{V_{\pi^{+}}, V_{T^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
28. $\left\{V_{\pi^{+}}, V_{K^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
29. $\left\{V_{\pi+}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}+}{\sqrt{6}}\right)$
30. $\left\{V_{\pi^{+}}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$
31. $\left\{V_{\pi+}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}+}{\sqrt{10}}\right)$
32. $\left\{V_{\pi+}, V_{B-}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}^{0}}\right)$
33. $\left\{V_{\pi+}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}+}{\sqrt{15}}\right)$
34. $\left\{V_{\pi+}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{+}}\right)$
35. $\left\{V_{\pi+}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi+}}{\sqrt{3}}\right)$
36. $\left\{V_{K^{+}}, V_{\pi-}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{0}}\right)$

Table 5 (Continued)
37. $\left\{V_{K+}, V_{8}\right\}=\left(\begin{array}{cccccc}0 & 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{K+}}{2 \sqrt{3}}\right)
$$

38. $\left\{V_{K^{+}}, V_{K-}\right\}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{2 V 0}{\sqrt{3}}+V_{3}-\frac{V_{8}}{\sqrt{3}}\right.
$$

$$
\left.+\sqrt{\frac{2}{3}} V_{15}+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

39. $\left\{V_{K^{+}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi+}\right)$
40. $\left\{V_{K^{+}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}+}{\sqrt{6}}\right)$
41. $\left\{V_{K+}, V_{D_{s}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$
42. $\left\{V_{K^{+}}, V_{B_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
43. $\left\{V_{K^{+}}, V_{T_{s}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T} 0}\right)$
44. $\left\{V_{K+}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{+}}\right)$
45. $\left\{V_{K+}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}+}{\sqrt{10}}\right)$
46. $\left\{V_{K^{+}}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}_{s}^{0}}\right)$
47. $\left\{V_{K+}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}+}{\sqrt{15}}\right)$
48. $\left\{V_{K^{+}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{S}^{+}}\right)$
49. $\left\{V_{K+}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K}+}{\sqrt{3}}\right)$
50. $\left\{V_{\bar{D}^{0}}, V_{\pi-}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right)$
51. $\left\{V_{\bar{D}^{0}}, V_{8}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{D}^{0}}}{2 \sqrt{3}}\right)$
52. $\left\{V_{\bar{D}^{0}}, V_{K}-\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
53. $\left\{V_{\bar{D} 0}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & -\frac{1}{\sqrt{6}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{D} 0}}{\sqrt{6}}\right)$
54. $\left\{V_{\bar{D}^{0}}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{2 V 0}{\sqrt{3}}+V_{3}+\frac{V_{8}}{\sqrt{3}}\right.$
$\left.-\sqrt{\frac{2}{3}} V_{15}+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)$

Table 5 (Continued)
55. $\left\{V_{\bar{D}^{0}}, V_{D+}\right\}=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{+}}\right)$
56. $\left\{V_{\bar{D}^{0}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$
57. $\left\{V_{\bar{D} 0}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{D} 0}}{\sqrt{10}}\right)$
58. $\left\{V_{\bar{D}^{0}}, V_{B_{c}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{+}}\right)$
59. $\left\{V_{\bar{D}^{0}}, V_{\bar{T}_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}^{0}}\right)$
60. $\left\{V_{\bar{D}^{0}}, V_{B}-\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{-}}\right)$
61. $\left\{V_{\bar{D} 0}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{D} 0}}{\sqrt{15}}\right)$
62. $\left\{V_{\bar{D}^{0}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)=\left(V_{T_{c}^{0}}\right)$
63. $\left\{V_{\bar{D} 0}, V_{0}\right\}=\left(\begin{array}{ccccccc}0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\overline{\bar{L}} 0}}{\sqrt{3}}\right)$
64. $\left\{V_{B^{+}}, V_{\pi^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{0}}\right)$
65. $\left\{V_{B^{+}}, V_{8}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B+}}{2 \sqrt{3}}\right)$
66. $\left\{V_{B^{+}}, V_{K^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{s}^{0}}\right)$
67. $\left\{V_{B+}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{6}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B+}}{2 \sqrt{6}}\right)$
68. $\left\{V_{B^{+}}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{+}}\right)$
69. $\left\{V_{B^{+}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{3 V_{B}+}{2 \sqrt{10}}\right)$
70. $\left\{V_{B^{+}}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{2 V_{0}}{\sqrt{3}}+V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}\right.$
$\left.-\frac{3 V_{24}}{\sqrt{10}}+\frac{2 V_{35}}{\sqrt{15}}\right)$
71. $\left\{V_{B^{+}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{+}}\right)$
72. $\left\{V_{B^{+}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{+}}\right)$
73. $\left\{V_{B}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{D}^{0}}\right)$

Table 5 (Continued)

Table 5 (Continued)
93. $\left\{V_{\pi^{-}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
94. $\left\{V_{\pi-}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}-}{\sqrt{6}}\right)$
95. $\left\{V_{\pi^{-}}, V_{D^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$
96. $\left\{V_{\pi-}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}-}{\sqrt{10}}\right)$
97. $\left\{V_{\pi-}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{-}}\right)$
98. $\left\{V_{\pi-}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}-}{\sqrt{15}}\right)$
99. $\left\{V_{\pi^{-}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{0}}\right)$
100. $\left\{V_{\pi-}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\pi}-}{\sqrt{3}}\right)$
101. $\left\{V_{8}, V_{K^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{V_{K^{0}}}{2 \sqrt{3}}\right)$

$$
\begin{aligned}
& \text { 102. }\left\{V_{8}, V_{D^{-}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{D-}}{2 \sqrt{3}}\right) \\
& \text { 103. }\left\{V_{8}, V_{B^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{B^{0}}}{2 \sqrt{3}}\right) \\
& \text { 104. }\left\{V_{8}, V_{T^{-}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{3}} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{T-}}{2 \sqrt{3}}\right) \\
& \text { 105. }\left\{V_{8}, V_{K-}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(-\frac{V_{K}-}{2 \sqrt{3}}\right) \\
& \text { 106. }\left\{V_{8}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(-\frac{V_{\bar{K} 0}}{2 \sqrt{3}}\right) \\
& \text { 107. }\left\{V_{8}, V_{15}\right\}=\left(\begin{array}{cccccc}
\frac{1}{6 \sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6 \sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3 \sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\frac{V_{8}}{\sqrt{6}}\right) \\
& \text { 108. }\left\{V_{8}, V_{D_{s}^{-}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(-\frac{V_{D_{s}}}{\sqrt{3}}\right) \\
& \text { 109. }\left\{V_{8}, V_{B_{s}^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{\sqrt{3}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(-\frac{V_{B_{s}^{0}}}{\sqrt{3}}\right)
\end{aligned}
$$

Table $\underline{5}$ (Continued)
110. $\begin{aligned}\left\{V_{8}, V_{T_{s}^{-}}\right\} & =\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \\ & =\left(-\frac{V_{T_{s}^{-}}}{\sqrt{3}}\right) \\ \text { 111. }\left\{V_{8}, V_{D^{0}}\right\} & =\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D^{0}}}{2 \sqrt{3}}\right)\end{aligned}$
112. $\left\{V_{8}, V_{D+}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D+}}{2 \sqrt{3}}\right)$
113. $\left\{V_{8}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{D_{s}}^{+}}{\sqrt{3}}\right)
$$

114. $\left\{V_{8}, V_{24}\right\}=\left(\begin{array}{cccccc}\frac{1}{2 \sqrt{30}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{30}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{\sqrt{30}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{8}}{\sqrt{10}}\right)
$$

115. $\left\{V_{8}, V_{B}-\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B}-}{2 \sqrt{3}}\right)$
116. $\left\{V_{8}, V_{\bar{B} 0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B} 0}}{2 \sqrt{3}}\right)$
117. $\left\{V_{8}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(-\frac{V_{\bar{B}_{s}^{0}}}{\sqrt{3}}\right)$
118. $\left\{V_{8}, V_{35}\right\}=\left(\begin{array}{cccccc}\frac{1}{6 \sqrt{5}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6 \sqrt{5}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{3 \sqrt{5}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{8}}{\sqrt{15}}\right)
$$

119. $\left\{V_{8}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T 0}}{2 \sqrt{3}}\right)$
120. $\left\{V_{8}, V_{T+}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{3}} & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T}+}{2 \sqrt{3}}\right)$
121. $\left\{V_{8}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{T_{s}^{+}}}{\sqrt{3}}\right)
$$

122. $\left\{V_{8}, V_{0}\right\}=\left(\begin{array}{cccccc}\frac{1}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{8}}{\sqrt{3}}\right)$
123. $\left\{V_{K^{0}}, V_{K^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
124. $\left\{V_{K^{0}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}-V_{3}-\frac{V_{8}}{\sqrt{3}}\right.
$$

$$
\left.+\sqrt{\frac{2}{3}} V_{15}+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

125. $\left\{V_{K^{0}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{0}}}{\sqrt{6}}\right)$

Table 5 (Continued)
$\begin{aligned} & \text { 126. }\left\{V_{K^{0}}, V_{D_{s}^{-}}\right\}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right) \\ & \text {127. }\left\{V_{K^{0}}, V_{B_{s}^{0}}\right\}\end{aligned} \begin{aligned} & \text { 128. }\left\{V_{K^{0}}, V_{T_{s}^{-}}\right\}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{0}}\right) \\ & \text { 129. }\left\{V_{K^{0}}, V_{D^{+}}\right\}\end{aligned}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{-}}\right)$
130. $\left\{V_{K^{0}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{0}}}{\sqrt{10}}\right)$
131. $\left\{V_{K^{0}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}_{s}^{0}}\right)$
132. $\left\{V_{K^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{0}}}{\sqrt{15}}\right)$
133. $\left\{V_{K^{0}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}^{+}}\right)$
134. $\left\{V_{K^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{0}}}{\sqrt{3}}\right)$
135. $\left\{V_{D^{-}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
136. $\left\{V_{D^{-}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{\sqrt{6}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{D-}}{\sqrt{6}}\right)
$$

$$
\text { 137. }\left\{V_{D^{-}}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{\pi^{-}}\right)
$$

$$
\text { 138. }\left\{V_{D^{-}}, V_{D^{+}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}-V_{3}+\frac{V_{8}}{\sqrt{3}}\right.
$$

$$
\left.-\sqrt{\frac{2}{3}} V_{15}+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

$$
\text { 139. }\left\{V_{D^{-}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{K^{0}}\right)
$$

$$
\text { 140. }\left\{V_{D^{-}}, V_{24}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{D-}}{\sqrt{10}}\right)
$$

$$
\text { 141. }\left\{V_{D^{-}}, V_{B_{c}^{+}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{B^{0}}\right)
$$

$$
\text { 142. }\left\{V_{D^{-}}, V_{\bar{T}_{c}^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{T^{-}}\right)
$$

$$
\text { 143. }\left\{V_{D^{-}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{B_{c}^{-}}\right)
$$

$$
\text { 144. }\left\{V_{D^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{D-}}{\sqrt{15}}\right)
$$

Table $\underline{5}$ (Continued)
145. $\left\{V_{D^{-}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)=\left(V_{T_{c}^{0}}\right)$
146. $\left\{V_{D^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D-}}{\sqrt{3}}\right)$
147. $\left\{V_{B^{0}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{s}^{0}}\right)$
148. $\left\{V_{B^{0}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{6}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B^{0}}}{2 \sqrt{6}}\right)$
149. $\left\{V_{B^{0}}, V_{D^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{C}^{+}}\right)$
150. $\left\{V_{B^{0}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{3 V_{B 0}}{2 \sqrt{10}}\right)$
151. $\left\{V_{B^{0}}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
152. $\left\{V_{B^{0}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{2 V_{0}}{\sqrt{3}}-V_{3}+\frac{V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}\right.$

$$
\left.-\frac{3 V_{24}}{\sqrt{10}}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

153. $\left\{V_{B^{0}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{0}}\right)$
154. $\left\{V_{B^{0}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right)$
155. $\left\{V_{B^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B} 0}{\sqrt{15}}\right)$
156. $\left\{V_{B^{0}}, V_{T_{b}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{-}}\right)$
157. $\left\{V_{B^{0}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(V_{T_{b}^{+}}\right)$
158. $\left\{V_{B^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B} 0}{\sqrt{3}}\right)$
159. $\left\{V_{T^{-}}, V_{\bar{K}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}{ }^{-}}\right)$
160. $\left\{V_{T^{-}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{6}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T}-}{2 \sqrt{6}}\right)$
161. $\left\{V_{T^{-}}, V_{D^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{c}}^{0}\right)$
162. $\left\{V_{T^{-}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{V_{T}-}{2 \sqrt{10}}\right)$

Table $\underline{5}$ (Continued)
163. $\left\{V_{T^{-}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{b}^{-}}\right)$
164. $\left\{V_{T^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{15}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{T}-}{\sqrt{15}}\right)
$$

165. $\left\{V_{T^{-}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\pi^{-}}\right)$
166. $\left\{V_{T^{-}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}-V_{3}+\frac{V_{8}}{\sqrt{3}}\right.
$$

$$
\left.+\frac{V_{15}}{\sqrt{6}}+\frac{V_{24}}{\sqrt{10}}-\frac{4 V_{35}}{\sqrt{15}}\right)
$$

167. $\left\{V_{T^{-}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{0}}\right)$
168. $\left\{V_{T^{-}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{-}}\right)$
169. $\left\{V_{T^{-}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{0}}\right)$
170. $\left\{V_{T^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T}-}{\sqrt{3}}\right)$
171. $\left\{V_{K^{-}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{-}}}{\sqrt{6}}\right)$
172. $\left\{V_{K^{-}}, V_{D_{S}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$ 173. $\left\{V_{K^{-}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K-}}{\sqrt{10}}\right)$
173. $\left\{V_{K^{-}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{-}}\right)$ 175. $\left\{V_{K^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{-}}}{\sqrt{15}}\right)$ 176. $\left\{V_{K^{-}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{0}}\right)$ 177. $\left\{V_{K^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{K^{-}}}{\sqrt{3}}\right)$ 178. $\left\{V_{\bar{K}^{0}}, V_{15}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{K}} 0}{\sqrt{6}}\right)$ 179. $\left\{V_{\bar{K}^{0}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$ 180. $\left\{V_{\bar{K}^{0}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{K}} 0}{\sqrt{10}}\right)$ 181. $\left\{V_{\bar{K}^{0}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}^{0}}\right)$

Table $\underline{5}$ (Continued)

$$
\begin{aligned}
& \text { 182. }\left\{V_{\bar{K}^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{\bar{K}^{0}}}{\sqrt{15}}\right) \\
& \text { 183. }\left\{V_{\bar{K}^{0}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)=\left(V_{T^{+}}\right) \\
& \text {184. }\left\{V_{\bar{K}^{0}}, V_{0}\right\}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{\bar{K}} 0}{\sqrt{3}}\right)
\end{aligned}
$$

$$
\text { 185. }\left\{V_{15}, V_{D_{s}^{-}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(-\frac{V_{D_{s}}-}{\sqrt{6}}\right)
$$

$$
\text { 186. }\left\{V_{15}, V_{B_{s}^{0}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{6}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{B_{s}^{0}}}{2 \sqrt{6}}\right)
$$

$$
\text { 187. }\left\{V_{15}, V_{T_{s}^{-}}\right\}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{6}} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\frac{V_{T_{s}^{-}}}{2 \sqrt{6}}\right)
$$

188. $\left\{V_{15}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{D^{0}}}{\sqrt{6}}\right)
$$

189. $\left\{V_{15}, V_{D+}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{D}+}{\sqrt{6}}\right)
$$

190. $\left\{V_{15}, V_{D_{S}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{\sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{V_{D_{s}}^{+}}{\sqrt{6}}\right)
$$

191. $\left\{V_{15}, V_{24}\right\}=\left(\begin{array}{cccccc}\frac{1}{4 \sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4 \sqrt{15}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4 \sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{\frac{3}{5}}}{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{V_{15}}{\sqrt{10}}\right)$
192. $\left\{V_{15}, V_{B_{c}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{3}{2}}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{1}{2} \sqrt{\frac{3}{2}} V_{B_{C}^{+}}\right)$
193. $\left\{V_{15}, V_{\bar{T}_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{3}{2}}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{1}{2} \sqrt{\frac{3}{2}} V_{\bar{T}_{c}^{0}}\right)$
194. $\left\{V_{15}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B}-}{2 \sqrt{6}}\right)$
195. $\left\{V_{15}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B}^{0}}}{2 \sqrt{6}}\right)$
196. $\left\{V_{15}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2 \sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B}_{s}^{0}}}{2 \sqrt{6}}\right)$

Table 5 (Continued)
197. $\left\{V_{15}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{\frac{3}{2}}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{1}{2} \sqrt{\frac{3}{2}} V_{B_{c}^{-}}\right)$
198. $\left\{V_{15}, V_{35}\right\}=\left(\begin{array}{cccccc}\frac{1}{6 \sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6 \sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{6 \sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2 \sqrt{10}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{15}}{\sqrt{15}}\right)
$$

199. $\left\{V_{15}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T 0}}{2 \sqrt{6}}\right)$
200. $\left\{V_{15}, V_{T+}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{6}} & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T+}}{2 \sqrt{6}}\right)$
201. $\left\{V_{15}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2 \sqrt{6}} & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T_{s}}^{+}}{2 \sqrt{6}}\right)$
202. $\left\{V_{15}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{\frac{3}{2}}}{2} & 0 & 0\end{array}\right)$

$$
=\left(-\frac{1}{2} \sqrt{\frac{3}{2}} V_{T_{c}^{0}}\right)
$$

203. $\left\{V_{15}, V_{0}\right\}=\left(\begin{array}{cccccc}\frac{1}{6 \sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6 \sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{6 \sqrt{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2 \sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{15}}{\sqrt{3}}\right)
$$

204. $\left\{V_{D_{s}^{-}}, V_{D^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
205. $\left\{V_{D_{s}^{-}}, V_{D}+\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
206. $\left\{V_{D_{s}^{-}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}-\frac{2 V_{8}}{\sqrt{3}}-\sqrt{\frac{2}{3}} V_{15}\right.
$$

$$
\left.+\sqrt{\frac{2}{5}} V_{24}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

207. $\left\{V_{D_{s}^{-}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{s}^{-}}}{\sqrt{10}}\right)$
208. $\left\{V_{D_{s}^{-}}, V_{B_{c}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{s}^{0}}\right)$
209. $\left\{V_{D_{s}^{-}}, V_{\bar{T}_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}^{-}}\right)$
210. $\left\{V_{D_{s}^{-}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{-}}\right)$ 211. $\left\{V_{D_{s}^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{s}^{-}}}{\sqrt{15}}\right)$
211. $\left\{V_{D_{s}^{-}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)=\left(V_{T_{c}^{0}}\right)$
212. $\left\{V_{D_{s}^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{s}}}{\sqrt{3}}\right)$

Table 5 (Continued)
214. $\left\{V_{B_{s}^{0}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{+}}\right)$
215. $\left\{V_{B_{s}^{0}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{3 V_{B_{s}^{0}}^{0}}{2 \sqrt{10}}\right)
$$

216. $\left\{V_{B_{s}^{0}}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
217. $\left\{V_{B_{s}^{0}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
218. $\left\{V_{B_{s}^{0}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(\frac{2 V_{0}}{\sqrt{3}}-\frac{2 V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}\right.$

$$
\left.-\frac{3 V_{24}}{\sqrt{10}}+\frac{2 V_{35}}{\sqrt{15}}\right)
$$

219. $\left\{V_{B_{s}^{0}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
220. $\left\{V_{B_{s}^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{s}^{0}}}{\sqrt{15}}\right)$
221. $\left\{V_{B_{s}^{0}}, V_{T_{b}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left\{V_{T_{s}^{-}}\right\}$
222. $\left\{V_{B_{s}^{0}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(V_{T_{b}^{+}}\right)$
223. $\left\{V_{B_{s}^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{s}^{0}}}{\sqrt{3}}\right)$
224. $\left\{V_{T_{s}^{-}}, V_{D_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}_{c}^{0}}\right)$
225. $\left\{V_{T_{s}^{-}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{T_{s}^{-}}}{2 \sqrt{10}}\right)
$$

226. $\left\{V_{T_{s}^{-}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{b}^{-}}\right)$
227. $\left\{V_{T_{s}^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{15}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{2 V_{T_{s}}}{\sqrt{15}}\right)$
228. $\left\{V_{T_{S}^{-}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{K^{-}}\right)$
229. $\left\{V_{T_{s}^{-}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{K}^{0}}\right)$
230. $\left\{V_{T_{s}^{-}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$=\left(\frac{2 V_{0}}{\sqrt{3}}-\frac{2 V_{8}}{\sqrt{3}}+\frac{V_{15}}{\sqrt{6}}\right.$
$\left.+\frac{V_{24}}{\sqrt{10}}-\frac{4 V_{35}}{\sqrt{15}}\right)$

Table 5 (Continued)
231. $\left\{V_{T_{s}^{-}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{-}}\right)$
232. $\left\{V_{T_{s}^{-}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{s}^{0}}\right)$
233. $\left\{V_{T_{s}^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T_{s}}}{\sqrt{3}}\right)$
234. $\left\{V_{D^{0}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D 0}}{\sqrt{10}}\right)$
235. $\left\{V_{D^{0}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{-}}\right)$
236. $\left\{V_{D^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D^{0}}}{\sqrt{15}}\right)$
237. $\left\{V_{D^{0}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{0}}\right)$
238. $\left\{V_{D^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D^{0}}}{\sqrt{3}}\right)$
239. $\left\{V_{D^{+}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D}+}{\sqrt{10}}\right)$
240. $\left\{V_{D^{+}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}^{0}}\right)$
241. $\left\{V_{D^{+}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D+}}{\sqrt{15}}\right)$
242. $\left\{V_{D^{+}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{+}}\right)$
243. $\left\{V_{D^{+}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D}+}{\sqrt{3}}\right)$
244. $\left\{V_{D_{s}^{+}}, V_{24}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\binom{V_{D_{s}^{+}}}{\sqrt{10}}$
245. $\left\{V_{D_{s}^{+}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{B}_{s}^{0}}\right)$
246. $\left\{V_{D_{S}^{+}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{S}^{+}}}{\sqrt{15}}\right)$
247. $\left\{V_{D_{s}^{+}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}^{+}}\right)$
248. $\left\{V_{D_{s}^{+}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{D_{s}^{+}}}{\sqrt{3}}\right)$
249. $\left\{V_{24}, V_{B_{C}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{3 V_{B_{c}^{+}}}{2 \sqrt{10}}\right)$

Table 5 (Continued)
250. $\left\{V_{24}, V_{\bar{T}_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{T}_{c}^{0}}}{2 \sqrt{10}}\right)$
251. $\left\{V_{24}, V_{B}-\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{3}{2 \sqrt{10}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{3 V_{B}-}{2 \sqrt{10}}\right)
$$

252. $\left\{V_{24}, V_{\bar{B} 0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{3}{2 \sqrt{10}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{3 V_{\bar{B} 0}}{2 \sqrt{10}}\right)
$$

253. $\left\{V_{24}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{3 V_{\bar{B} 0}^{0}}{2 \sqrt{10}}\right)
$$

254. $\left\{V_{24}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{3}{2 \sqrt{10}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{3 V_{B_{c}^{-}}}{2 \sqrt{10}}\right)
$$

255. $\left\{V_{24}, V_{35}\right\}=\left(\begin{array}{cccccc}\frac{1}{10 \sqrt{6}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{10 \sqrt{6}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{10 \sqrt{6}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{10 \sqrt{6}} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{\frac{2}{3}}}{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{24}}{\sqrt{15}}\right)
$$

256. $\left\{V_{24}, V_{T_{b}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sqrt{\frac{2}{5}} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{2}{5}} V_{T_{b}^{-}}\right)
$$

257. $\left\{V_{24}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T 0}}{2 \sqrt{10}}\right)$
258. $\left\{V_{24}, V_{T+}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2 \sqrt{10}} & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{T+}}{2 \sqrt{10}}\right)$
259. $\left\{V_{24}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2 \sqrt{10}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(\frac{V_{T_{s}^{+}}}{2 \sqrt{10}}\right)
$$

260. $\left\{V_{24}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2 \sqrt{10}} & 0 & 0\end{array}\right)=\left(\frac{V_{T_{c}^{0}}}{2 \sqrt{10}}\right)$
261. $\left\{V_{24}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\sqrt{\frac{2}{5}} & 0\end{array}\right)$

$$
=\left(-\sqrt{\frac{2}{5}} V_{T_{b}^{+}}\right)
$$

$$
\text { 262. }\left\{V_{24}, V_{0}\right\}=\left(\begin{array}{cccccc}
\frac{1}{2 \sqrt{30}} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2 \sqrt{30}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2 \sqrt{30}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2 \sqrt{30}} & 0 & 0 \\
0 & 0 & 0 & 0 & -\sqrt{\frac{2}{15}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
=\left(\frac{V_{24}}{\sqrt{3}}\right)
$$

263. $\left\{V_{B_{c}^{+}}, V_{B^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$
264. $\left\{V_{B_{C}^{+}}, V_{\bar{B}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$

Table $\underline{5}$ (Continued)
265. $\left\{V_{B_{c}^{+}}, V_{\bar{B}_{s}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{+}}\right)$
266. $\left\{V_{B_{c}^{+}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
= & \left(\frac{2 V_{0}}{\sqrt{3}}-\sqrt{\frac{3}{2}} V_{15}\right. \\
& \left.-\frac{3 V_{24}}{\sqrt{10}}+\frac{2 V_{35}}{\sqrt{15}}\right)
\end{aligned}
$$

267. $\left\{V_{B_{c}^{+}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{c}^{+}}}{\sqrt{15}}\right)$
268. $\left\{V_{B_{c}^{+}}, V_{T_{b}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{\bar{T}_{c}^{0}}\right)$
269. $\left\{V_{B_{c}^{+}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(V_{T_{b}^{+}}\right)$
270. $\left\{V_{B_{c}^{+}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{c}^{+}}}{\sqrt{3}}\right)$
271. $\left\{V_{\bar{T}_{c}^{0}}, V_{B_{c}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{b}^{-}}\right)$
272. $\left\{V_{\bar{T}_{c}^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{15}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{\bar{T}_{c}^{0}}}{\sqrt{15}}\right)
$$

273. $\left\{V_{\bar{T}_{C}^{0}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{0}}\right)$
274. $\left\{V_{\bar{T}_{c}^{0}}, V_{T^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D^{+}}\right)$
275. $\left\{V_{\bar{T}_{c}^{0}}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{D_{s}^{+}}\right)$
276. $\left\{V_{\bar{T}_{c}^{0}}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

$$
=\left(\frac{2 V_{0}}{\sqrt{3}}-\sqrt{\frac{3}{2}} V_{15}\right.
$$

$$
\left.+\frac{V_{24}}{\sqrt{10}}-\frac{4 V_{35}}{\sqrt{15}}\right)
$$

277. $\left\{V_{\bar{T}_{c}^{0}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B_{c}^{+}}\right)$
278. $\left\{V_{\bar{T}_{c}^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{T}_{c}^{0}}}{\sqrt{3}}\right)$
279. $\left\{V_{B^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B}-}{\sqrt{15}}\right)$
280. $\left\{V_{B^{-}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{0}}\right)$
281. $\left\{V_{B^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B}-}{\sqrt{3}}\right)$
282. $\left\{V_{\bar{B} 0}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B} 0}}{\sqrt{15}}\right)$

Table 5 (Continued)
283. $\left\{V_{\bar{B}^{0}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{T^{+}}\right)$
284. $\left\{V_{\bar{B} 0}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B} 0}}{\sqrt{3}}\right)$
285. $\left\{V_{\bar{B}_{s}^{0}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B}_{s}^{0}}}{\sqrt{15}}\right)$
286. $\left\{V_{\bar{B}_{s}^{0}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)=\left(V_{T_{s}^{+}}\right)$
287. $\left\{V_{\bar{B}_{s}^{0}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{\bar{B}_{s}^{0}}}{\sqrt{3}}\right)$
288. $\left\{V_{B_{c}^{-}}, V_{35}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{15}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{c}^{-}}}{\sqrt{15}}\right)$
289. $\left\{V_{B_{c}^{-}}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)=\left(V_{T_{c}^{0}}\right)$
290. $\left\{V_{B_{c}^{-}}, V_{0}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(\frac{V_{B_{c}^{-}}}{\sqrt{3}}\right)$
291. $\left\{V_{35}, V_{T_{b}^{-}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{15}} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$=\left(-\frac{2 V_{\frac{T}{-}}}{\sqrt{15}}\right)$
292. $\left\{V_{35}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{2}{\sqrt{15}} & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{T 0}}{\sqrt{15}}\right)
$$

293. $\left\{V_{35}, V_{T+}\right\}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{2}{\sqrt{15}} & 0 & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{T+}}{\sqrt{15}}\right)
$$

294. $\left\{V_{35}, V_{T_{s}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{2}{\sqrt{15}} & 0 & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{T_{s}^{+}}}{\sqrt{15}}\right)
$$

295. $\left\{V_{35}, V_{T_{c}^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{2}{\sqrt{15}} & 0 & 0\end{array}\right)$

$$
=\left(-\frac{2 V_{T_{c}^{0}}}{\sqrt{15}}\right)
$$

296. $\left\{V_{35}, V_{T_{b}^{+}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{15}} & 0\end{array}\right)$

$$
=\left(-\frac{2 T_{b}^{+}}{\sqrt{15}}\right)
$$

297. $\left\{V_{35}, V_{0}\right\}=\left(\begin{array}{cccccc}\frac{1}{6 \sqrt{5}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{6 \sqrt{5}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{6 \sqrt{5}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{6 \sqrt{5}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{6 \sqrt{5}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{6}\end{array}\right)$

$$
=\left(\frac{V_{35}}{\sqrt{3}}\right)
$$

298. $\left\{V_{T_{b}^{-}}, V_{T^{0}}\right\}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)=\left(V_{B^{-}}\right)$

Table $\underline{5}$ (Continued)

The structure constants and Lie generators have been constructed so that they remain the same for $S U(n-m)$, where $n>m(n, m$ are positive integers). In general, commutators of Lie group generators (see Table 3) are themselves linear combinations of these same generators and the generator algebra is called a Lie algebra. ${ }^{6-14}$ If the group has r (group order) $\equiv N^{2}-1$ generators, then there are $(1 / 2)(r-1) r=(1 / 2)\left(N^{2}-2\right)\left(N^{2}-1\right)$ possible generator commutation relations. The rank l of a Lie group is equal to the maximum number of generators (linear) which mutually commute. There also exist l nonlinear Casimir operators $C_{i}=\sum_{j=1}^{r} a_{j i} V_{j}^{i+1}, i=1,2, \ldots, l$, which commute with all of the algebra generators. Following primarily the notation of Lichtenberg ${ }^{9}$ but also others: ${ }^{10-20}$ - the mutually commuting generators are conventionally denoted by $H_{i}(i=1,2, \ldots, l)$, where $H_{i}=H_{i}{ }^{\dagger}$, and $\left[H_{i}, H_{j}\right]=0(i, j=1,2, \ldots, l)$. So $H_{1}=V_{3}=\frac{\lambda_{3}}{2}, H_{2}=V_{8}=\frac{\lambda_{8}}{2}, H_{3}=V_{15}=\frac{\lambda_{15}}{2}, H_{4}=V_{24}=\frac{\lambda_{24}}{2}, H_{5}=V_{35}=\frac{\lambda_{35}}{2}$ and $\mathbf{H} \equiv\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right)$. The l (maximal number of mutually commuting

Hermitian generators) and H_{i} (Cartan generators) are the basis for what is called the Cartan subalgebra and constitute a linear space. The H_{i} are Cartan $\left(A_{5}\right)$ generators and the rank of the traceless, semisimple, compact Lie algebra of the classical group $S U(6)$ is $(6-1)=5=$ number of H_{i} 's.

1.2. Roots and weights

Given the generators V_{a}, one can construct $A=\sum_{j=1}^{r} a_{j} V_{j}$ and the eigenvalue equation $[A, X]=\rho X$, where X is some linear combination of the V_{j}, then one can derive the secular equation (polynomial of degree r) for the $(r-l)$ eigenvalues called roots ρ, namely $\operatorname{det}\left(\sum_{i=1}^{r} a_{i} f_{i j k}-\rho \delta_{j k}\right)=0$. For semisimple Lie groups (which includes $S U(N)$), Cartan has shown that there are r independent eigenvectors (even if there exist degenerate roots for $\rho=0$) and the multiplicity of these degenerate roots is equal to the rank l.

We define (Cartan-Weyl formalism) $l=5$ generators (the H_{i} mentioned above), $(r-l)=30$ remaining generators, $E_{\alpha} \equiv V_{\alpha}$, where $\alpha=\left(\pi^{ \pm}, K^{ \pm}, K^{0}, \bar{K}^{0}, \bar{D}^{0}, D^{0}\right.$, $D^{ \pm}, D_{s}^{ \pm}, B^{0}, \bar{B}^{0}, B^{ \pm}, B_{s}^{0}, \bar{B}_{s}^{0}, B_{c}^{ \pm}, T^{ \pm}, T^{0}, \bar{T}^{0}, T_{s}^{ \pm}, T_{c}^{0}, \bar{T}_{c}^{0}, T_{b}^{ \pm}$), six-dimensional basis states (vectors u_{i}), the diagonal vector operator \mathbf{H}, and six five-dimensional weights (convention dependent) $\mathbf{m}(i)$ of $S U(6)$:

$$
\begin{gather*}
H_{i}=H_{i}^{\dagger}, \quad\left[H_{i}, H_{j}\right]=0, \\
\operatorname{Tr}\left[H_{i}, H_{j}\right]=\frac{1}{2} \delta_{i j}, \quad \mathbf{H} \equiv\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right), \tag{2a}\\
u_{i}=\left(\begin{array}{c}
\delta_{i}^{1} \\
\delta_{i}^{2} \\
\delta_{i}^{3} \\
\delta_{i}^{4} \\
\delta_{i}^{5} \\
\delta_{i}^{6}
\end{array}\right) \Rightarrow u_{1}=|u\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \tag{2b}\\
u_{2}=|d\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \ldots, u_{6}=|t\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right), \\
\mathbf{H} u_{i}=\mathbf{m}(i) u_{i}, \quad \mathbf{m}(i)=\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right), \tag{2c}\\
\mathbf{m}(1)=\left(H_{1} u, H_{2} u, H_{3} u, H_{4} u, H_{5} u\right), \tag{2d}\\
\mathbf{m}(2)=\left(H_{1} d, H_{2} d, H_{3} d, H_{4} d, H_{5} d\right),
\end{gather*}
$$

$$
\begin{align*}
& \mathbf{m}(3)=\left(H_{1} s, H_{2} s, H_{3} s, H_{4} s, H_{5} s\right), \tag{2e}\\
& \mathbf{m}(4)=\left(H_{1} c, H_{2} c, H_{3} c, H_{4} c, H_{5} c\right), \\
& \mathbf{m}(5)=\left(H_{1} b, H_{2} b, H_{3} b, H_{4} b, H_{5} b\right), \tag{2f}\\
& \mathbf{m}(6)=\left(H_{1} t, H_{2} t, H_{3} t, H_{4} t, H_{5} t\right) .
\end{align*}
$$

Using Eqs. (2), Tables 1 and 3, we obtain

$$
\begin{gather*}
\mathbf{m}(1)=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{1}{2 \sqrt{15}}\right), \\
\mathbf{m}(2)=\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{1}{2 \sqrt{15}}\right), \tag{3a}\\
\mathbf{m}(3)=\left(0,-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{1}{2 \sqrt{15}}\right), \tag{3b}\\
\mathbf{m}(4)=\left(0,0,-\frac{3}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{1}{2 \sqrt{15}}\right), \\
\mathbf{m}(5)=\left(0,0,0,-\frac{2}{\sqrt{10}}, \frac{1}{2 \sqrt{15}}\right), \\
\mathbf{m}(6)=\left(0,0,0,0,-\frac{5}{2 \sqrt{15}}\right), \tag{3c}\\
\mathbf{m}(i) \cdot \mathbf{m}(j)=-\frac{1}{2 * 6}+\frac{1}{2} \delta_{i j}, \tag{3d}\\
\sum_{i=1}^{i=6} \mathbf{m}(i)=0 . \tag{3e}
\end{gather*}
$$

So the j th component of $\mathbf{m}(k)$ is given by

$$
m_{j}(k)= \begin{cases}{[2 j(j+1)]^{-1 / 2}} & k<j+1 \tag{4}\\ -j[2 j(j+1)]^{-1 / 2} & k=j+1 \\ 0 & k>j+1\end{cases}
$$

The eigenvalues $\mathbf{m}(i)$ form a 5 -simplex hexateron ${ }^{11,21}$ and are the weights of the first fundamental representation of $S U(6)$ spanning a l-dimensional vector weightspace. We use the convention that \mathbf{m} is higher than \mathbf{m}^{\prime} if the last component of the vector $\mathbf{m}-\mathbf{m}^{\prime}$ is positive - if that is zero, one moves to the next component and so on. Thus, the (eigenvalues) $\mathbf{m}(i)$ in Eq. (3) are already ordered. There exist four other fundamental representations of $S U(6)$, however one can construct the entire Lie algebra from the first fundamental representation. The positive roots α_{i} are

$$
\begin{equation*}
\mathbf{m}(i)-\mathbf{m}(j) \quad \text { for } \quad i<j \quad(i, j)=1, \ldots, 6 \tag{5}
\end{equation*}
$$

There are 15 positive roots. We now introduce some helpful new notation:

We also have

$$
\begin{equation*}
\left[\mathbf{H}, E_{\alpha}\right]=\left[\mathbf{H}, V_{\alpha}\right]=\boldsymbol{\rho}(\alpha) V_{\alpha} \tag{7}
\end{equation*}
$$

where the $\boldsymbol{\rho}(\alpha)$ are l-dimensional root vectors spanning a $(r-l)=30$-dimensional root-space.

We can extract all roots $\boldsymbol{\rho}(\alpha)$ from the nonzero commutation relations given in Table 3 and using Eq. (7). We define a root as positive if its last component is positive - otherwise it is negative. In addition, it can be shown that $\boldsymbol{\rho}\left(\alpha^{\dagger}\right)=$ $-\boldsymbol{\rho}(\alpha)$ so that for instance $\boldsymbol{\rho}\left(\pi^{-}\right)=-\boldsymbol{\rho}\left(\pi^{+}\right)=(-1,0,0,0,0)$. Thus, for V_{α} where $\left(\alpha=\pi^{-}, \pi^{+}, K^{+}, K^{0}, K^{-}, \bar{K}^{0}, \bar{D}^{0}, \ldots, B^{+}, \ldots, \bar{T}^{0}, \ldots, T_{b}^{+}\right)$, utilizing Eq. (2), Table 1 (defines the V_{α} in terms of the λ matrices), and Table 3 (which lists all nonzero commutators), one can extract the positive root vectors $\boldsymbol{\rho}(\alpha)$. One can also obtain the positive roots by using:
positive roots are given by $\mathbf{m}(i)-\mathbf{m}(j)$ for $i<j$.
Either way, we obtain the following positive root listing - note that the positive roots lie to the right of the diagonal of the 6×6 Lie algebra generator matrix in Eq. (6) and have length 1 :

	List of positive root vectors	
$\boldsymbol{\rho}\left(\pi^{+}\right)=(1,0,0,0,0)$	$\boldsymbol{\rho}\left(K^{+}\right)=\left(\frac{1}{2}, \frac{3}{2 \sqrt{3}}, 0,0,0\right)$	$\boldsymbol{\rho}\left(\bar{D}^{0}\right)=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{2}{\sqrt{6}}, 0,0\right)$
$\boldsymbol{\rho}\left(B^{+}\right)=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{5}{2 \sqrt{10}}, 0\right)$	$\boldsymbol{\rho}\left(\bar{T}^{0}\right)=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{3}{\sqrt{15}}\right)$	$\boldsymbol{\rho}\left(K^{0}\right)=\left(-\frac{1}{2}, \frac{3}{2 \sqrt{3}}, 0,0,0\right)$
$\boldsymbol{\rho}\left(D^{-}\right)=\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{2}{\sqrt{6}}, 0,0\right)$	$\boldsymbol{\rho}\left(B^{0}\right)=\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{5}{2 \sqrt{10}}, 0\right)$	$\boldsymbol{\rho}\left(T^{-}\right)=\left(-\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{3}{\sqrt{15}}\right)$
$\boldsymbol{\rho}\left(D_{s}^{-}\right)=\left(0,-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{6}}, 0,0\right)$	$\boldsymbol{\rho}\left(B_{s}^{0}\right)=\left(0,-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{5}{2 \sqrt{10}}, 0\right)$	$\boldsymbol{\rho}\left(T_{s}^{-}\right)=\left(0,-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{3}{\sqrt{15}}\right)$
$\boldsymbol{\rho}\left(B_{c}^{+}\right)=\left(0,0,-\frac{3}{2 \sqrt{6}}, \frac{5}{2 \sqrt{10}}, 0\right)$	$\boldsymbol{\rho}\left(\bar{T}_{c}^{0}\right)=\left(0,0,-\frac{3}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{3}{\sqrt{15}}\right)$	$\boldsymbol{\rho}\left(T_{b}^{-}\right)=\left(0,0,0,-\frac{2}{\sqrt{10}}, \frac{3}{\sqrt{15}}\right)$

Of the 15 positive roots, only $l=5$ are linearly independent and complete and are called the simple roots. The number of simple roots is equal to the rank of the algebra, the number of Cartan generators. The simple roots are

$$
\begin{equation*}
\boldsymbol{\rho}\left(\alpha_{i}\right)=\mathbf{m}(i)-\mathbf{m}(i+1) \quad \text { for } i=1, \ldots,(6-1)=5 \tag{9}
\end{equation*}
$$

List of simple root vectors

$\boldsymbol{\rho}\left(\pi^{+}\right)=(1,0,0,0,0)$	$\boldsymbol{\rho}\left(K^{0}\right)=\left(-\frac{1}{2}, \frac{3}{2 \sqrt{3}}, 0,0,0\right)$	$\boldsymbol{\rho}\left(D_{s}^{-}\right)=\left(0,-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{6}}, 0,0\right)$
$\boldsymbol{\rho}\left(B_{c}^{+}\right)=\left(0,0,-\frac{3}{2 \sqrt{6}}, \frac{5}{2 \sqrt{10}}, 0\right)$	$\boldsymbol{\rho}\left(T_{b}^{-}\right)=\left(0,0,0,-\frac{2}{\sqrt{10}}, \frac{3}{\sqrt{15}}\right)$	

1.3. Fundamental weights

The fundamental representation weights $\boldsymbol{\mu}_{j}$ of $S U(6)$ are given by

$$
\begin{gather*}
\frac{2 \boldsymbol{\rho}\left(\alpha_{i}\right) \cdot \boldsymbol{\mu}_{j}}{\alpha_{i}^{2}}=\delta_{i j} \tag{10}\\
\boldsymbol{\mu}_{j}=\sum_{k=1}^{j} \mathbf{m}(k) . \tag{11}
\end{gather*}
$$

List of $S U(6)$ fundamental weights
$\boldsymbol{\mu}_{1}=\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{1}{2 \sqrt{15}}\right) \quad \boldsymbol{\mu}_{2}=\left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{10}}, \frac{1}{\sqrt{15}}\right) \quad \boldsymbol{\mu}_{3}=\left(0,0, \frac{3}{2 \sqrt{6}}, \frac{3}{2 \sqrt{10}}, \frac{3}{2 \sqrt{15}}\right)$
$\boldsymbol{\mu}_{4}=\left(0,0,0, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{15}}\right) \quad \boldsymbol{\mu}_{5}=\left(0,0,0,0, \frac{5}{2 \sqrt{15}}\right)$
The rank $l \boldsymbol{\mu}_{j}$ are the highest (dominant) weights of the rank l fundamental representations and are complete. Thus, the highest weight $\boldsymbol{\mu}$ of any irreducible $S U(6)$ representation can be written in terms of these $\boldsymbol{\mu}_{j}$. Indeed, we have

$$
\begin{gather*}
\frac{2 \boldsymbol{\rho}\left(\alpha_{j}\right) \cdot \boldsymbol{\mu}}{\alpha_{j}^{2}}=l_{j} \tag{12}\\
\boldsymbol{\mu}=\sum_{j=1}^{l} l_{j} \boldsymbol{\mu}_{j} \tag{13}
\end{gather*}
$$

where the l_{j} are Dynkin coefficients and are non-negative integers. The $S U(6) 35-$ plet is denoted by $(1,0,0,0,1)$. The standard Young tableau can be constructed by noting that the k th Dynkin label is the number of tableau columns with k boxes. Thus, for instance, $(1,1,0,0,0) \sim \square$. In general (see Ref. 9), a tableau is specified by $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)$ (here the $p_{j}=$ positive integers $=l_{j}(j=1, \ldots, l)$ in Eq. (13)) and the i th fundamental representation is given by

$$
\begin{equation*}
p_{i}=1, \quad p_{j}=0, \quad \text { where } i \neq j \quad \text { for } i, j=1, \ldots(6-1)=5 \tag{14}
\end{equation*}
$$

Thus, $(1,0,0,0,0) \sim \square \sim$ first fundamental representation of $S U(6)$. We also note that for an irreducible representation (irrep.) with $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)$, the highest weight is given by

$$
\begin{equation*}
\boldsymbol{\mu}_{\text {dominant weight }}=\sum_{i=1}^{l} p_{i} \boldsymbol{\mu}_{i} \tag{15}
\end{equation*}
$$

So the highest weight for the irrep. $(1,1,0,0,0)$ is $\left(\frac{1}{2}, \frac{3}{2 \sqrt{3}}, \frac{3}{2 \sqrt{6}}, \frac{3}{2 \sqrt{10}}, \frac{3}{2 \sqrt{15}}\right)$, whereas the highest weight for the irrep. $(1,0,0,0,1)$ is $\left(\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{6}}, \frac{1}{2 \sqrt{10}}, \frac{3}{\sqrt{15}}\right)$.

The dimension D_{6} of a particular representation with $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)$ is given by the following equation (see Ref. 9):

$$
\begin{align*}
& D_{6}\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right) \\
& =\frac{1}{2!3!4!5!}\left(p_{1}+1\right)\left(p_{1}+p_{2}+2\right)\left(p_{1}+p_{2}+p_{3}+3\right) \\
& \quad \times\left(p_{2}+1\right)\left(p_{2}+p_{3}+2\right)\left(p_{3}+1\right)\left(p_{4}+1\right)\left(p_{4}+p_{3}+2\right) \\
& \quad \times\left(p_{4}+p_{3}+p_{2}+3\right)\left(p_{4}+p_{3}+p_{2}+p_{1}+4\right)\left(p_{5}+1\right)\left(p_{5}+p_{4}+2\right) \\
& \quad \times\left(p_{5}+p_{4}+p_{3}+3\right)\left(p_{5}+p_{4}+p_{3}+p_{2}+4\right)\left(p_{5}+p_{4}+p_{3}+p_{2}+p_{1}+5\right) \tag{16}
\end{align*}
$$

2. Equal-Time Commutation and Anticommutation Relations and Infinite-Momentum Frame Asymptotic Symmetry

$S U(6) 35$-plet $q \bar{q}$ representation matrix

$$
\begin{gather*}
\quad \begin{array}{cccccc}
\bar{u} & \bar{d} & \bar{s} & \bar{c} & \bar{b} & \bar{t} \\
u \\
d \\
s \\
c \\
b \\
t
\end{array}\left(\begin{array}{cccccc}
u \bar{u} & u \bar{d} & u \bar{s} & u \bar{c} & u \bar{b} & u \bar{t} \\
d \bar{u} & d \bar{d} & d \bar{s} & d \bar{c} & d \bar{b} & d \bar{t} \\
s \bar{u} & s \bar{d} & s \bar{s} & s \bar{c} & s \bar{b} & s \bar{t} \\
c \bar{u} & c \bar{d} & c \bar{s} & c \bar{c} & c \bar{b} & c \bar{t} \\
b \bar{u} & b \bar{d} & b \bar{s} & b \bar{c} & b \bar{b} & b \bar{t} \\
t \bar{u} & t \bar{d} & t \bar{s} & t \bar{c} & t \bar{b} & t \bar{t}
\end{array}\right) . \tag{17}
\end{gather*}
$$

$S U(6)$ normalized, orthogonal, and traditional zero weight particle representation states constructed using diagonal $S U(6)$ group quark matrix elements

$$
\begin{align*}
\left|\eta_{3}\right\rangle & =\left|\frac{u \bar{u}-d \bar{d}}{\sqrt{2}}\right\rangle=\left|\pi^{0}\right\rangle \\
\left|\eta_{8}\right\rangle & =\left|\frac{u \bar{u}+d \bar{d}-2 s \bar{s}}{\sqrt{6}}\right\rangle \sim|\eta\rangle \\
\left|\eta_{15}\right\rangle & =\left|\frac{u \bar{u}+d \bar{d}+s \bar{s}-3 c \bar{c}}{2 \sqrt{3}}\right\rangle \tag{18}\\
\left|\eta_{24}\right\rangle & =\left|\frac{u \bar{u}+d \bar{d}+s \bar{s}+c \bar{c}-4 b \bar{b}}{2 \sqrt{5}}\right\rangle \\
\left|\eta_{35}\right\rangle & =\left|\frac{u \bar{u}+d \bar{d}+s \bar{s}+c \bar{c}+b \bar{b}-5 t \bar{t}}{\sqrt{30}}\right\rangle \\
\left|\eta_{0}\right\rangle & =\left|\frac{u \bar{u}+d \bar{d}+s \bar{s}+c \bar{c}+b \bar{b}+t \bar{t}}{\sqrt{6}}\right\rangle
\end{align*}
$$

In Ref. 22, using infinite-momentum frame broken asymptotic symmetry, we calculated the magnetic moments of the physical on-mass shell $J^{P}=3 / 2^{+}$groundstate decuplet baryons without ascribing any specific form to their quark structure or intra-quark interactions by using equal-time commutation relations (ETCRs) which involve at most one current density, thus, avoiding problems associated with Schwinger terms. Here, the ETCRs involve the vector charge generators (the V_{α}) of the symmetry groups of QCD. They are valid even though these symmetries are broken ${ }^{3,14,15,22-27,33-35}$ and even when the Lagrangian is not known or cannot be constructed.

As shown in Ref. 22 and references therein, infinite-momentum frame broken asymptotic symmetry is characterized by the existence of physical on-mass-shell hadron annihilation operators $a_{\alpha}(\mathbf{k}, \lambda)$ (momentum $\mathbf{k}(|\mathbf{k}| \rightarrow \infty)$, helicity λ, and $S U_{F}(N)$ flavor index α) and their creation operator counterparts which produce physical states when acting on the vacuum. Indeed, the physical on-mass-shell
hadron annihilation operator $a_{\alpha}(\mathbf{k}, \lambda)$ is related linearly under flavor transformations to the representation annihilation operator $a_{j}(\mathbf{k}, \lambda)$. Thus, in the infinitemomentum frame, physical states denoted by $|\alpha, \mathbf{k}, \lambda\rangle$ (which do not belong to irreducible representations) are linear combinations of representation states denoted by $|j, \mathbf{k}, \lambda\rangle$ (which do belong to irrep.) plus nonlinear corrective terms that are best calculated in a frame where mass differences are deemphasized such as in the infinite-momentum frame. Mathematically, ${ }^{14,15,22,23,27-30}$ this is expressed by $|\alpha, \mathbf{k}, \lambda\rangle=\sum_{j} C_{\alpha j}|j, \mathbf{k}, \lambda\rangle,|\mathbf{k}| \rightarrow \infty$, where the orthogonal matrix $C_{\alpha j}$ depends on physical $S U_{F}(N)$ mixing parameters, is defined only in the ∞-momentum frame, and can be constrained directly by ETCRs.

It cannot be overemphasized that the particular Lorentz frame that one utilizes when analyzing current-algebraic sum rules does not matter when flavor symmetry is exact and is strictly a matter of taste and calculational convenience, whereas when one uses current-algebraic sum rules in broken symmetry, the choice of frame is paramount since one wishes to emphasize the calculation of leading order contributions while simultaneously simplifying the calculation of symmetry breaking corrections. ${ }^{14,15,22-27,31-33}$

While we will only discuss the $J^{P C}=0^{-+} 35$-plet representation in this paper, nevertheless, it is instructive to outline our normalization conventions including fermionic representation states. In Table 5, we give all nonzero anticommutation relations, where the singlet $U(1)$ matrix V_{0} is explicitly present. We have particle four-momentum $p=\left(p^{0}, \mathbf{p}\right)$, with

$$
\begin{gathered}
{\left[a^{(r)}(p), a^{\dagger(s)}\left(p^{\prime}\right)\right]_{+}=\left[b^{(r)}(p), b^{\dagger(s)}\left(p^{\prime}\right)\right]_{+}=N_{a} \delta_{r s} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)} \\
u^{\dagger(r)}(p) u^{(s)}(p)=N_{D} \delta_{r s} \\
\psi(x)=\sum_{r} \int \mathrm{~d}^{3} p N_{\psi}\left[a^{(r)}(p) u^{(r)}(p) e^{-i p \cdot x}+b^{\dagger(r)}(p) v^{(r)}(p) e^{+i p \cdot x}\right] \\
a^{(r)}(p)=\left((2 \pi)^{3} N_{\psi} N_{D}\right)^{-1} \int \mathrm{~d}^{3} x e^{+i p \cdot x} \bar{u}^{r}(p) \gamma_{0} \psi(x) \\
b^{(r)}(p)=\left((2 \pi)^{3} N_{\psi} N_{D}\right)^{-1} \int \mathrm{~d}^{3} x e^{+i p \cdot x} \bar{\psi}(x) \gamma_{0} v^{(r)}(p) \\
\left\langle s^{\prime}, \mathbf{p}^{\prime}, \lambda^{\prime} \mid s, \mathbf{p}, \lambda\right\rangle=\delta_{s s^{\prime}} \delta_{\lambda \lambda^{\prime}}(2 \pi)^{3} 2 p^{0} \delta^{3}\left(\mathbf{p}^{\prime}-\mathbf{p}\right)
\end{gathered}
$$

where $a^{(r)}(p)$ and $b^{(r)}(p)$ are creation operators, $u^{(s)}(p), v^{(r)}(p)$ are Dirac spinors, $\psi(x)$ is a spin $1 / 2$ Dirac field operator (s, λ denote particle spin and helicity, respectively), $|\psi\rangle=\sum_{s, \lambda} \int N_{a}^{-1} \mathrm{~d}^{3} p|s, p, \lambda\rangle\langle s, p, \lambda \mid \psi\rangle,(2 \pi)^{6} N_{\psi}^{2} N_{D}^{2}\langle N| \Omega^{\mu \cdots}|N\rangle$ is covariant (transforms like $\Omega^{\mu \cdots}$), and $(2 \pi)^{3} N_{\psi}^{2} N_{D} N_{a}=1$.

3. The Physical Electromagnetic Current

We now discuss the vector charges and two-particle basis states after imposing a unitary homogeneous pure Lorentz transformation $-\hat{z}$ boost such that the
three-momentum \mathbf{k} of all states has $|\mathbf{k}| \rightarrow \infty$, and all creation operators produce physical states when acting on the physical vacuum (see Refs. 22 and 23 for more details).

First, we note that the charges operating on states (see Eqs. (6), (17) and (18)) transform according to

$$
\begin{equation*}
V_{i}^{j}\left|q_{k} \bar{q}_{l}\right\rangle=\delta_{k}^{j}\left|q_{i} \bar{q}_{l}\right\rangle-\delta_{i}^{l}\left|q_{k} \bar{q}_{j}\right\rangle . \tag{19}
\end{equation*}
$$

Bras and kets are given by

$$
\begin{align*}
\left|D^{+}, p^{\prime}\right\rangle\left(J^{P C}=0^{-+}\right) & =|c \bar{d}\rangle=\left|u_{4} \bar{u}_{2}\right\rangle \\
\left\langle D^{*+}, p^{\prime}\right|\left(J^{P C}=1^{--}\right) & \equiv\left\langle^{*} c \bar{d}\right|=\left\langle^{*} u_{4} \bar{u}_{2}\right|, \text { etc. } \tag{20}
\end{align*}
$$

where the spacelike four-momentum transfer q^{2} is given by

$$
\begin{align*}
q^{2} & =\left(p^{\prime}-p\right)^{2}=m^{* 2}+m^{2}-2 p^{\prime} \cdot p \tag{21}\\
p^{\prime} & =\left(E^{\prime}, \mathbf{s}\right)=\left(\sqrt{m^{* 2}+s_{x}^{2}+s_{z}^{2}}, s_{x}, 0, s_{z}\right) \tag{22}\\
p & =(E, \mathbf{t})=\left(\sqrt{m^{2}+t_{z}^{2}}, 0,0, t_{z}\right) \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\text { Set } s_{z}=r t_{z} \quad \text { and } \quad 0<r=\text { const } \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
p^{\prime} \cdot p=\sqrt{m^{* 2}+s_{x}^{2}+r^{2} t_{z}^{2}} \sqrt{m^{2}+t_{z}^{2}}-r t_{z}^{2} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
p^{\prime} \cdot p=r t_{z}^{2} \sqrt{1+\frac{m^{* 2}+s_{x}^{2}}{r^{2} t_{z}^{2}}} \sqrt{1+\frac{m^{2}+t_{z}^{2}}{t_{z}^{2}}}-r t_{z}^{2} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\overbrace{p^{\prime} \cdot p}^{t_{z} \rightarrow \infty}=\frac{1}{2}\left(\frac{m^{* 2}+s_{x}^{2}+r^{2} m^{2}}{r}\right), \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
q^{2}=m^{* 2}+m^{2}-\left(\frac{m^{* 2}+s_{x}^{2}+r^{2} m^{2}}{r}\right) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
q^{2}=\frac{-(1-r)}{r} m^{* 2}\left[1-\left(\frac{m^{2}}{m^{* 2}}\right) r\right]-\frac{s_{x}^{2}}{r} \tag{29}
\end{equation*}
$$

The physical vector charge $V_{K^{0}}$ is $V_{K^{0}}=V_{6}+i V_{7}$, the physical vector charge $V_{\pi^{ \pm}}=$ $V_{1} \pm i V_{2}$, etc. The $\lambda_{a}, a=1,2, \ldots, 35$ satisfy the Lie algebra $\left[\left(\lambda_{a} / 2\right),\left(\lambda_{b} / 2\right)\right]=$ $i \sum_{c} f_{a b c}\left(\lambda_{c} / 2\right)$, where the $f_{a b c}$ are structure constants of the flavor group $S U_{F}(6)$ and $V_{a}{ }^{\mu}(x)=\bar{q}^{i}(x)\left(\lambda_{a} / 2\right)_{i j} \gamma^{\mu} q^{j}(x)$.

The physical electromagnetic current $j_{\text {em }}^{\mu}(0)(u, d, s, c, b, t$ quark system) is

$$
\begin{align*}
j_{\mathrm{em}}^{\mu}(0)= & V_{3}^{\mu}(0)+\left(\frac{1}{3}\right)^{1 / 2} V_{8}^{\mu}(0)-\left(\frac{2}{3}\right)^{1 / 2} V_{15}^{\mu}(0) \\
& +\left(\frac{2}{5}\right)^{1 / 2} V_{24}^{\mu}(0)-\left(\frac{3}{5}\right)^{1 / 2} V_{35}^{\mu}(0)+\left(\frac{1}{3}\right)^{1 / 2} \times V_{0}^{\mu}(0) \tag{30}\\
= & j_{V}^{\mu}(0)+j_{S}^{\mu}(0), \tag{31}
\end{align*}
$$

where $j_{V}^{\mu}(0) \equiv j_{\mathrm{em} 3}^{\mu}(0)=$ the iso-vector part of the electromagnetic current, $j_{S}^{\mu}(0) \equiv$ the isoscalar part of the electromagnetic current. The flavor $U(1)$ singlet current $V_{0}{ }^{\mu}(x)=\bar{q}^{i}(x)\left(\lambda_{0} / 2\right)_{i j} \gamma^{\mu} q^{j}(x)$ where $\lambda_{0} \equiv \sqrt{1 / 3} I, I$ is the identity, so that $\operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b}$ holds for all $\lambda_{a^{\prime}}\left(a^{\prime}=0,1,2, \ldots, 35\right)$, and $j_{0}^{\mu}=V_{0}^{\mu} / \sqrt{3}$. The $U(1)$ singlet charge V_{0} commutes with all of the V_{a}.

From the commutation relations in Table 3, we obtain the fascinating equation (it contains only ETCRs and explicitly the electromagnetic current singlet j_{0}^{μ}) in broken symmetry $j^{\mu} \equiv j_{\mathrm{em}}^{\mu}(0)$ (momentum \mathbf{k} with $\left.|\mathbf{k}| \rightarrow \infty\right)$:

$$
\begin{align*}
& {\left[\left[j^{\mu}, V_{\pi^{+}}\right], V_{\pi^{-}}\right]+\left[\left[j^{\mu}, V_{D_{s}^{-}}\right], V_{D_{s}^{+}}\right]+\left[\left[j^{\mu}, V_{T_{b}^{-}}\right], V_{T_{b}^{+}}\right]} \\
& \quad=2 j^{\mu}-2\left(\frac{V_{0}^{\mu}}{\sqrt{3}}\right)=2 j^{\mu}-2 j_{0}^{\mu} \tag{32}
\end{align*}
$$

The angles between the simple roots appearing in Eq. (32) are: $\theta_{\boldsymbol{\rho}\left(\pi^{+}\right), \boldsymbol{\rho}\left(D_{s}^{-}\right)}=$ $\theta_{\boldsymbol{\rho}\left(D_{s}^{-}\right), \boldsymbol{\rho}\left(T_{b}^{-}\right)}=90^{\circ}$. These angles correspond to the $(u, d),(c, s)$, and (t, b) doublet "sectors."

For vector $(V) \rightarrow$ pseudoscalar (P) radiative decays, we have (in the infinitemomentum frame $\left[t_{z} \rightarrow \infty\right.$, see Eq. (29)], $\lambda=1=$ vector meson polarization index, $\mu=0, r=1$, and $s_{x}^{2}=0 \Rightarrow q^{2}=0$ in the following matrix element):

$$
\begin{gather*}
\langle V| j^{\mu}|P\rangle=\langle V\rangle \epsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}(\mathbf{p}, \lambda) p_{\rho}^{\prime} p_{\sigma} \tag{33a}\\
\Gamma\left(V\left(p^{\prime}, \lambda=1\right) \rightarrow P(p)+\gamma\left(q^{2}=0\right)\right)=\frac{\langle V\rangle^{2}}{96 \pi}\left(\frac{m_{V}^{2}-m_{P}^{2}}{m_{V}}\right)^{3}, \tag{33b}\\
|\langle V\rangle|=\left[96 \pi\left(\frac{m_{V}}{m_{V}^{2}-m_{P}^{2}}\right)^{3} \Gamma(V \rightarrow P+\gamma)\right]^{\frac{1}{2}} \tag{33c}
\end{gather*}
$$

So for instance, if we evaluate Eq. (32) between the states $\left\langle D^{*+}\right|$ and $\left|D^{+}\right\rangle$using Eqs. (17), (19) and (20) we obtain

$$
\begin{equation*}
\left\langle D^{* 0}\right\rangle+\left\langle\bar{K}^{* 0}\right\rangle=2\left\langle D^{*+}\right\rangle_{0} \tag{34}
\end{equation*}
$$

where

$$
\begin{aligned}
\left\langle D^{* 0}\right\rangle & \equiv\left\langle D^{* 0}\right| j^{\mu}\left|D^{0}\right\rangle \\
\left\langle\bar{K}^{* 0}\right\rangle & \equiv\left\langle\bar{K}^{* 0}\right| j^{\mu}\left|K^{0}\right\rangle \\
\left\langle\rho^{+}\right\rangle_{0} & \equiv\left\langle\rho^{+}\right| \frac{1}{\sqrt{3}} V_{0}^{\mu}\left|\pi^{+}\right\rangle \\
\left\langle D^{* 0}\right\rangle_{0} & \equiv\left\langle D^{* 0}\right\rangle \frac{1}{\sqrt{3}} V_{0}^{\mu}\left|D^{0}\right\rangle, \text { etc. }
\end{aligned}
$$

M. D. Slaughter

We define

$$
\begin{align*}
& X_{1^{--}} \equiv\left(\begin{array}{c}
\rho^{0} \\
\omega \\
\phi \\
\psi \\
\Upsilon \\
t \bar{t}
\end{array}\right), \tag{35}\\
& X_{0^{-+}} \equiv\left(\begin{array}{c}
\pi^{0} \\
\eta \\
\eta^{\prime} \\
\eta_{c} \\
\eta_{b} \\
\eta_{t}
\end{array}\right) . \tag{36}
\end{align*}
$$

Evaluating Eq. (32) between the 16 bra-ket state pairs with bras yields

$$
\begin{gathered}
\left\langle\rho^{0}\right|,\left\langle\rho^{+}\right|,\left\langle K^{*+}\right|,\left\langle\bar{D}^{* 0}\right|,\left\langle B^{*+}\right|,\left\langle\bar{T}^{* 0}\right|,\left\langle K^{* 0}\right|,\left\langle D^{*-}\right|, \\
\left\langle B^{* 0}\right|,\left\langle T^{*-}\right|,\left\langle D_{s}^{*-}\right|,\left\langle B_{s}^{* 0}\right|,\left\langle T_{s}^{*-}\right|,\left\langle B_{c}^{*+}\right|,\left\langle\bar{T}_{c}^{* 0}\right| \text { and }\left\langle\bar{T}_{b}^{*-}\right|,
\end{gathered}
$$

then we find that

$$
\begin{align*}
&\left\langle\rho^{+}\right\rangle=\left\langle\rho^{-}\right\rangle=\left\langle\rho^{0}\right\rangle_{0}, \tag{37}\\
&\left\langle\rho^{0}\right\rangle=\left\langle\rho^{+}\right\rangle_{0}, \tag{38}\\
&\left\langle K^{* 0}\right\rangle+\left\langle\bar{D}^{* 0}\right\rangle=2\left\langle K^{*+}\right\rangle_{0}, \tag{39}\\
&\left\langle K^{*+}\right\rangle+\left\langle D^{*-}\right\rangle=2\left\langle\bar{D}^{* 0}\right\rangle_{0}, \tag{40}\\
&\left\langle B^{* 0}\right\rangle+\left\langle\bar{T}^{* 0}\right\rangle=2\left\langle B^{*+}\right\rangle_{0}, \tag{41}\\
&\left\langle B^{*+}\right\rangle+\left\langle T^{*-}\right\rangle=2\left\langle\bar{T}^{* 0}\right\rangle_{0}, \tag{42}\\
&\left\langle K^{*+}\right\rangle+\left\langle D^{*-}\right\rangle=2\left\langle K^{* 0}\right\rangle_{0}, \tag{43}\\
&\left\langle K^{* 0}\right\rangle+\left\langle\bar{D}^{* 0}\right\rangle=2\left\langle D^{*-}\right\rangle_{0}, \tag{44}\\
&\left\langle B^{*+}\right\rangle+\left\langle T^{*-}\right\rangle=2\left\langle B^{* 0}\right\rangle_{0}, \tag{45}\\
&\left\langle B^{* 0}\right\rangle+\left\langle\bar{T}^{* 0}\right\rangle=2\left\langle T^{*-}\right\rangle_{0}, \tag{46}\\
&\left\langle D_{s}^{*-}\right\rangle\left\langle D_{s}^{-}\right| V_{D_{s}^{-}}\left|\left[X_{0-+}\right\rangle\left\langle X_{0^{-+}}\right]\right| V_{D_{s}}^{+}\left|D_{s}^{-}\right\rangle \\
&-\left\langle D_{s}^{*-}\right| V_{D_{s}^{-}}\left|\left[X_{1--}\right\rangle\left\langle X_{1}--\right]\right| j^{\mu}\left|\left[X_{0^{-+}}\right\rangle\left\langle X_{0^{-+}}\right]\right| V_{D_{s}}^{+}\left|D_{s}^{-}\right\rangle \\
&=2\left\langle D_{s}^{*-}\right\rangle-2\left\langle D_{s}^{*-}\right\rangle_{0}, \tag{47}
\end{align*}
$$

$$
\begin{gather*}
\left\langle B_{c}^{*+}\right\rangle+\left\langle T_{s}^{*-}\right\rangle=2\left\langle B_{s}^{* 0}\right\rangle_{0}, \tag{48}\\
\left\langle B_{s}^{* 0}\right\rangle+\left\langle\bar{T}_{c}^{* 0}\right\rangle=2\left\langle T_{s}^{*-}\right\rangle_{0}, \tag{49}\\
\left\langle B_{s}^{* 0}\right\rangle+\left\langle\bar{T}_{c}^{* 0}\right\rangle=2\left\langle B_{c}^{*+}\right\rangle_{0}, \tag{50}\\
\left\langle B_{c}^{*+}\right\rangle+\left\langle\bar{T}_{s}^{*-}\right\rangle=2\left\langle\bar{T}_{c}^{* 0}\right\rangle_{0}, \tag{51}\\
\left\langle T_{b}^{*-}\right\rangle\left\langle T_{b}{ }^{-}\right| V_{T_{b}-}\left|\left[X_{0^{-+}}\right\rangle\left\langle X_{0^{-+}}\right]\right| V_{T_{b}^{+}}\left|T_{b}^{-}\right\rangle \\
-\left\langle T_{b}^{*-}\right| V_{T_{b}^{-}}\left|\left[X_{1^{--}}\right\rangle\left\langle X_{1^{--}}\right]\right| j^{\mu}\left|\left[X_{0^{-+}}\right\rangle\left\langle X_{0^{-+}}\right]\right| V_{T_{b}^{+}}\left|T_{b}^{-}\right\rangle \\
=2\left\langle T_{b}^{*-}\right\rangle-2\left\langle T_{b}^{*-}\right\rangle_{0} . \tag{52}
\end{gather*}
$$

Equations (37)-(52) explicitly demonstrate in broken symmetry the importance of the electromagnetic current singlet $U(1)$ matrix V_{0} contribution to radiative decays. Indeed, one finds that $\Gamma\left(\rho^{ \pm} \rightarrow \pi^{ \pm} \gamma\right)$ and $\Gamma\left(\rho^{0} \rightarrow \pi^{0} \gamma\right)$ are entirely due to the electromagnetic current singlet contribution. At present, insufficient data are available for most of the decay matrix elements in Eqs. (37)-(52). Even where there are data, the signs of the matrix elements are not yet experimentally available, although there exist theoretical models which predict matrix element signs. ${ }^{1}$ From Eqs. (39) and (44), we find that $\left\langle D^{*-}\right\rangle_{0}=\left\langle K^{*+}\right\rangle_{0}$. Similarly, we find from Eqs. (40) and (43), we find that $\left\langle\bar{D}^{* 0}\right\rangle_{0}=\left\langle K^{* 0}\right\rangle_{0}$. Very little is known about the behavior of the singlet generator in broken symmetry, other than that given by Eqs. (37)(52) - to partially remedy that situation let the right-hand sides of Eqs. (39) and (43) be proportional, i.e. $\left\langle K^{* 0}\right\rangle_{0}=\beta\left\langle K^{*+}\right\rangle_{0}$. We then obtain ${ }^{5}$

$$
\begin{equation*}
\frac{\left\langle D^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle}=\frac{1}{\beta} *\left[1+\frac{\left\langle D^{*-}\right\rangle}{\left\langle K^{*+}\right\rangle}-\beta * \frac{\left\langle K^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle}\right], \quad \text { where } \quad \beta \neq 0 \tag{53}
\end{equation*}
$$

From data in Ref. 5 , we get (\pm signs are not correlated and β is assumed to be 1) (an assumption suggested only by Eqs. (37) and (38) ρ triplet charged and neutral singlet results and perhaps holding for doublets as well):

$$
\begin{align*}
\frac{\left\langle D^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle} & =1+(\pm(0.56 \pm 0.08))-(\pm(1.52 \pm 0.10)) \\
& = \begin{cases}+0.05 \pm 0.13 & \text { for }++ \\
+3.06 \pm 0.13 & \text { for }+- \\
-1.06 \pm 0.13 & \text { for }-+, \\
+1.95 \pm 0.13 & \text { for }--\end{cases} \tag{54}
\end{align*}
$$

This implies that (statistical propagation of errors - quadrature calculated):

$$
\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)_{\beta=1}= \begin{cases}0.13_{-0.13}^{+0.65} \mathrm{keV} & \text { for }++, \tag{55}\\ 468.0 \pm 61.0 \mathrm{keV} & \text { for }+-, \\ 56.0 \pm 15.0 \mathrm{keV} & \text { for }-+, \\ 189.0 \pm 31.0 \mathrm{keV} & \text { for }--\end{cases}
$$

$\Gamma\left(D^{\star 0} \rightarrow D^{0}+\gamma\right)[\mathrm{keV}]$ versus β

Fig. 1. $\Gamma\left(D^{* 0} \rightarrow D^{0}+\gamma\right)$ versus β.

In Fig. 1, we graphically show $\Gamma\left(D^{* 0} \rightarrow D^{0}+\gamma\right)$ versus β as β is allowed to vary from -2 to 2 .

From Fig. 1, we see that $\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ is dependent upon the signs of $\frac{\left\langle D^{*-}\right\rangle}{\left\langle K^{*+}\right\rangle}$ and $\frac{\left\langle K^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle}$. However, in unbroken $S U(3) \frac{\left\langle K^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle}$ is negative and $=-2$., ${ }^{1,15,26}$ From experiment we therefore choose $\frac{\left\langle K^{* 0}\right\rangle}{\left\langle K^{*+}\right\rangle}=-1.51 \pm 0.10$, so we expect the +- or -curves in Fig. 1 to be more physically predictive. From Table 3, we have at our disposal

$$
\begin{align*}
& {\left[V_{K^{0}}, j^{\mu}\right]=0} \tag{56a}\\
& {\left[V_{D^{0}}, j^{\mu}\right]=0} \tag{56b}
\end{align*}
$$

Evaluating (we neglect intermultiplet mixing with the $K^{*}(1410)$) Eq. (56a) between the physical asymptotic states $\left\langle K^{+}\right|$and $\left|\rho^{+}\right\rangle$and Eq. (56b) between the physical asymptotic states $\left\langle D^{+}\right|$and $\left|\rho^{+}\right\rangle$, one obtains

$$
\begin{equation*}
\left\langle D^{*+}\right\rangle=\left\langle K^{*+}\right\rangle=\left\langle\rho^{+}\right\rangle . \tag{57}
\end{equation*}
$$

Thus, we expect (conjugate states used) that $\frac{\left\langle D^{*-}\right\rangle}{\left\langle K^{*+\rangle}\right\rangle}$ is positive and the +- curve in Fig. 1, to be that which is operative. An experimental determination of $\Gamma\left(D^{* 0} \rightarrow\right.$ $D^{0} \gamma$) would then provide a value for β which may be useful in further research especially where higher rank special unitary groups and Lie algebras play a role. Unfortunately, current experimental data from Ref. 5 yields only that $\Gamma\left(D^{* 0} \rightarrow\right.$ $\left.D^{0} \gamma\right) \leq 741.3 \mathrm{keV}, \mathrm{CL}=90 \%$.

At present, quantum field theories (including SUSY theories) have not been successful in replacing the standard model (QCD ... which does not include gravity) with a grand unified theory without hierarchical or other problems. Generally speaking, most theories are perturbative and renormalizable with local gauge fields strongly related to Lie algebras and utilize spontaneous symmetry breaking. In Lie algebraic representations of interest, anomalies (for instance, see Refs. 11, 36, 37, especially Chap. 22) and, Refs. 38 and 39 must vanish for physical representations - a severe constrain on those theories. On the other hand, Eqs. (37)-(52) are nonperturbative.

4. Summary and Conclusions

We presented research on radiative decays of vector ($J^{P C}=1^{--}$) to pseudoscalar $\left(J^{P C}=0^{-+}\right)$particles (u, d, s, c, b, t quark system) using broken symmetry techniques in the infinite-momentum frame and equal-time commutation relations. The research utilized the $S U(6)$ Lie algebra characterization of flavor $S U_{F}(6)$ representations and the physical electromagnetic current $j_{\mathrm{em}}^{\mu}(0)$ including its singlet $U(1)$ term and focused on the 35 -plet. The research was conducted without ascribing any specific form to meson quark structure or intra-quark interactions by using ETCRs which involve at most one current density, thus, avoiding problems associated with Schwinger terms. We found that the electromagnetic current singlet plays an intrinsic role in understanding the physics of radiative decays where (bilinear) commutators of the $S U(6)$ Lie algebra generators are Lie products acting over the real number field. Indeed, in broken symmetry and the infinite-momentum frame, we developed a new and fascinating equation involving the electromagnetic current (including its singlet-proportional to the $S U(6)$ singlet), three $S U(6)$ simple roots, and double commutators using ETCRs.

For notational conciseness and self-containment and use by other researchers, $S U(6)$ Lie algebra simple roots, positive roots, weights, fundamental weights, nonzero commutators, and nonzero anticommutators were also determined which allow construction of all $S U(6)$ representations. Surprisingly - after symmetry breaking - we discovered that charged and neutral ρ meson radiative decays into $\pi \gamma$ were due entirely to the singlet term in $j_{\mathrm{em}}^{\mu}(0)$. Although there is insufficient experimental data on the radiative decay $\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ available at this time, we derived equations involving physical matrix elements of the $S U(6)$ singlet generator which allowed parametrization of possible predicted values of $\Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$ versus β.

References

1. P. J. O'Donnell, Rev. Mod. Phys. 53, 673 (1981), doi:10.1103/RevModPhys.53.673.
2. S. Lie, Theorie der Transformationsgruppen, Vol. 1 (1888) [(Reprinted by Chelsea Publishing Co., New York, 1970), Modern Presentation and English Translation by Joël Merker, https://arxiv.org/pdf/1003.3202.pdf, 2010].
3. M. Gell-Mann, Physics 1, 63 (1964).
4. E. Cartan, Sur la structure des groupes de transformations finis et continus, thesis, Paris, 1894.
5. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018).
6. E. B. Dynkin, Amer. Math. Soc. 17, 143 (1950).
7. G. Racah, Group theory and spectroscopy, CERN-61-08.
8. R. E. Behrends, J. Dreitlein, C. Fronsdal and W. Lee, Rev. Mod. Phys. 34, 1 (1962).
9. D. B. Lichtenberg, Unitary Symmetry and Elementary Particles, 2nd edn. (Academic Press, New York, 1978).
10. R. Slansky, Phys. Rep. 79, 1 (1981), doi:10.1016/0370-1573(81)90092-2.
11. H. M. Georgi, Lie Algebras in Particle Physics: From Isospin to Unified Theories, 2nd edn. (Westview Press, Perseus, 1999).
12. R. N. Cahn, Semi-Simple Lie Algebras and their Representations (Benjamin/ Cummings Publishing Company, Menlo Park, California, 1984).
13. M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover, 1989) [An unabridged, corrected republication of the second (corrected) printing (1964) of the work first published by Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1962, in its "Addison-Wesley Series in Physics"].
14. S. Oneda and K. Terasaki, Prog. Theor. Phys. Suppl. 82, 1 (1985).
15. S. Oneda and Y. Koide, Asymptotic Symmetry and Its Implication in Elementary Particle Physics (World Scientific, Singapore, 1991).
16. H. F. Jones, Groups, Representations and Physics, 2nd edn. (Taylor and Francis Group, 1998).
17. J. A. Shapiro, Group theory in physics, Lecture Notes, Rutgers University, New Brunswick, NJ, 2017.
18. J. L. Bell and H. Korté, Article on Hermann Weyl, The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Principal Editor: Edward N. Zalta (Metaphysics Research Lab, Stanford University, Stanford, CA, USA), https://plato.stanford.edu/ archives/win2016/entries/weyl/.
19. H. Weyl, Z. Phys. 46, 1 (1927), doi:10.1007/BF02055756.
20. C. Lüdeling, Group theory (for Physicists), http://www.th.physik.uni-bonn.de/nilles/ people/luedeling/grouptheory/data/grouptheorynotes.pdf.
21. H. S. M. Coxeter, Regular Polytopes, 3rd edn. (Dover Publications, Inc., New York, 1973).
22. M. D. Slaughter, Phys. Rev. D 84, 071303 (2011), doi:10.1103/PhysRevD.84.071303, arXiv:1107.2838 [hep-ph].
23. M. D. Slaughter, Phys. Rev. C 80, 038201 (2009).
24. S. Oneda, M. D. Slaughter and T. Teshima, Hadron ' 89 - Proc., 3rd Int. Conf. on Hadron Spectroscopy, Ajaccio, France, 23-27 September 1989, eds. F. G. Binon, J. M. Frere and J. P. Peigneux (Editions Frontieres, Gif-sur-Yvette, France, 1989), pp. 423428 [See also An Algebraic Approach to the Axial Vector, Vector, and Pseudoscalar Mesons: Radiative Decays, Mass Relations, and the Singlet Electromagnetic Current, University of Maryland, College Park].
25. S. Oneda, K. Terasaki and M. D. Slaughter, On broken flavor symmetry in particle physics, KEK Library Report No. MDDP-PP-89-130, University of Maryland, College Park, 1989, http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198904122.
26. M. D. Slaughter and S. Oneda, Phys. Rev. D 39, 2062 (1989).
27. S. Oneda, T. Tanuma and M. D. Slaughter, Phys. Lett. B 88, 343 (1979).
28. M. D. Slaughter and S. Oneda, Phys. Rev. Lett. 39, 309 (1977) [Erratum: ibid. 39, 676 (1977)].
29. M. Yasuè, S. Oneda and M. D. Slaughter, Phys. Rev. D 30, 174 (1984).
30. M. D. Slaughter and S. Oneda, Phys. Rev. Lett. 59, 1641 (1987).
31. M. L. Perl, High Energy Hadron Physics (John Wiley and Sons, Inc., New York, 1974).
32. P. A. Carruthers, Spin and Isospin in Particle Physics (Gordon and Breach, Science Publishers, Inc., New York, 1971).
33. V. De Alfaro, S. Fubini, G. Furlan and C. Rossetti, Currents in Hadron Physics (North-Holland, Amsterdam, 1973).
34. S. L. Adler, Phys. Rev. 140, B736 (1965).
35. W. I. Weisberger, Phys. Rev. 143, 1302 (1966).
36. S. Weinberg, The Quantum Theory of Fields: Modern Applications, Vol. II (Cambridge University Press, 1996).
37. L. Álvarez-Gaumé and M. A. Vázquez-Mozo, Introductory lectures on quantum field theory, arXiv:hep-th/0510040v4.
38. L. Álvarez-Gaumé, NATO Sci. Ser. B 141, 93 (1986).
39. A. Bilal, Lectures on anomalies, arXiv:0802.0634 [hep-th].
